首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
 基于岩桥力学性质弱化机制,采用带伺服系统的直剪试验仪进行试验,在5级法向应力下,对3种含齿形节理的非贯通节理岩体进行直剪试验,研究非贯通节理岩体的强度特性和变形特性。在较低的法向应力下,含起伏角较低齿形节理面的非贯通节理岩体出现破坏模式I(张拉破坏模式)。在较高的法向应力下,含起伏角较高齿形节理面的非贯通节理岩体可能出现破坏模式II(先张拉后剪切破坏模式)。相同齿形节理面形貌的非贯通节理岩体,随着法向应力增大,峰值切向位移增大,抗剪强度增大。在相同的法向应力下,随着齿形节理面起伏角增大,非贯通节理岩体的峰值切向位移减小,抗剪强度增大。非贯通节理岩体黏聚力按Jennings方法计算值大于按试验拟合值;节理面较粗糙非贯通节理岩体内摩擦角按Jennings方法计算值大于按试验拟合值。  相似文献   

2.
通过直剪模型试验,研究节理形貌对非贯通节理岩体的抗剪强度、变形和贯通模式的影响。在相同法向应力下,节理起伏度越大,非贯通节理岩体的抗剪强度越大。在相同法向应力下,非贯通节理岩体的法向变形越大,但是,节理起伏度越大,峰值剪切位移越小。在较高法向应力下,节理起伏度对贯通模式影响较大,节理起伏度大的非贯通节理岩体的贯通模式为剪切模式TTS,节理起伏度小的贯通节理岩体的贯通模式为张拉模式TTT。在低法向应力下,起伏度对贯通破坏模式影响小,非贯通节理岩体贯通模式都为张拉模式TTT。  相似文献   

3.
对3种节理连通率条件下的预制非贯通节理岩体试件进行三轴加卸荷试验,对比分析其加卸荷条件下的应力–应变关系曲线特征、破坏形态以及强度特征,同时分析卸荷条件下非贯通节理试件的变形以及强度特征与节理连通率之间的关系。结果表明:(1)非贯通节理岩体加卸荷条件下均表现出各向异性力学特性,且随着节理连通率的增大,这种各向异性特性表现的更为明显;(2)卸荷条件下,试件产生的裂纹更多,破坏程度更高;(3)节理连通率对试件卸荷阶段的变形特性影响显著,变形模量随着连通率的增大而逐渐减小;(4)各节理角度下,非贯通节理岩体卸荷阶段变形模量降幅、卸荷当量峰值强度与连通率k之间的关系可用线性函数表示;(5)随着节理连通率的增大,加载条件下岩体峰值强度逐渐下降,卸荷条件下试件抗剪强度参数黏聚力和内摩擦角均随之逐渐减小。  相似文献   

4.
节理岩体的力学特性直接影响工程岩体的安全。为了研究节理岩体的各向异性力学特性和破坏特征,设计进行了0°,30°,45°,60°,75°和90°等6种角度断续节理砂岩的三轴压缩试验,详细分析了节理倾角对断续节理岩体变形强度特征和破坏模式的影响。研究结果表明:①在加载过程中,随着围压增大,断续节理砂岩应力–应变曲线的屈服阶段逐渐明显,峰值强度和残余强度逐渐提高,破坏时延性特征逐渐明显;②随着节理倾角增大,断续节理砂岩的变形模量、抗压强度、黏聚力和内摩擦角等力学参数均呈现先减小后增大的U型变化趋势;③节理对岩样破坏裂纹的形成与开展具有明显的诱导和控制作用,不同倾角岩样的破裂面均顺节理倾角方向发展,当节理倾角与岩样计算破坏角接近的时候,岩样的破裂面顺节理面开展,变形和强度参数达到极小值;④随着围压增大,不同倾角断续节理岩样的变形和强度参数差别逐渐减小,各向异性特征逐渐减弱;⑤断续节理砂岩的破坏模式可分为张拉破坏、折线型的复合剪张破坏、沿节理面剪切破坏等3种类型,节理倾角的分布决定了断续节理砂岩在加载作用下的变形破坏模式,变形破坏模式的差异决定了断续节理砂岩变形和强度参数的各向异性特征。研究成果可为工程中节理岩体的各向异性特征分析提供较好的参考。  相似文献   

5.
节理岩体的力学特性直接影响工程岩体的安全。为了研究节理岩体的各向异性力学特性和破坏特征,设计进行了0°,30°,45°,60°,75°和90°等6种角度断续节理砂岩的三轴压缩试验,详细分析了节理倾角对断续节理岩体变形强度特征和破坏模式的影响。研究结果表明:①在加载过程中,随着围压增大,断续节理砂岩应力-应变曲线的屈服阶段逐渐明显,峰值强度和残余强度逐渐提高,破坏时延性特征逐渐明显;②随着节理倾角增大,断续节理砂岩的变形模量、抗压强度、黏聚力和内摩擦角等力学参数均呈现先减小后增大的U型变化趋势;③节理对岩样破坏裂纹的形成与开展具有明显的诱导和控制作用,不同倾角岩样的破裂面均顺节理倾角方向发展,当节理倾角与岩样计算破坏角接近的时候,岩样的破裂面顺节理面开展,变形和强度参数达到极小值;④随着围压增大,不同倾角断续节理岩样的变形和强度参数差别逐渐减小,各向异性特征逐渐减弱;⑤断续节理砂岩的破坏模式可分为张拉破坏、折线型的复合剪张破坏、沿节理面剪切破坏等3种类型,节理倾角的分布决定了断续节理砂岩在加载作用下的变形破坏模式,变形破坏模式的差异决定了断续节理砂岩变形和强度参数的各向异性特征。研究成果可为工程中节理岩体的各向异性特征分析提供较好的参考。  相似文献   

6.
节理研究进展及在非贯通节理岩体研究的应用   总被引:1,自引:0,他引:1  
节理的表面形貌可按其规模大小分为起伏度和粗糙度两类.节理面的几何和力学特性对非贯通节理岩体扩展贯通有重要影响.典型节理面的粗糙形貌可以模拟为一系列非规则的、齿形凸台形貌.综述了贯通节理破坏理论新的进展,并探讨了节理破坏理论的适用性.结合非贯通节理岩体研究的现状,提出了考虑节理的粗糙度和起伏度情况下研究非贯通节理岩体扩展贯通强度和变形特性的新思路.  相似文献   

7.
《Planning》2019,(6)
岩体的力学性质主要受制于节理的力学性质,而节理充填物对节理的力学性质有较大影响。为研究节理充填物厚度对节理力学性质的影响,采用水泥砂浆制作不同充填度的规则人工节理进行剪切试验,并采用PFC(Particle Flow Code)数值模拟软件研究该节理的破坏机理。试验与数值模拟结果表明:随着法向荷载和充填度的增大,节理峰值剪切强度增大,剪胀特性减弱;随着起伏角的增大,节理峰值剪切强度增大,剪胀特性增强。在节理剪切过程中,充填体首先发生破坏,此后再产生剪切断裂和剪胀破坏。在不同的法向荷载、充填度和起伏角条件下,节理破坏为滑移破坏、剪切断裂破坏和拉伸断裂破坏3种,低法向荷载和低起伏角时,滑移破坏为主,拉伸断裂发生于起伏角较大的节理中,而剪切断裂破坏多以节理和充填体共同破裂组成,发生于法向荷载与充填度均为中等大小的情况。当充填体厚度与齿形凸起高度相当时,节理破坏主要为充填体剪切破坏。  相似文献   

8.
节理弱面是造成岩体力学性能弱化的主要因素,而充填物质的非均质性将显著影响节理岩体的剪切力学特性。考虑压剪应力作用下贯通性节理充填物中沿节理方向裂隙对节理岩体断裂特性的影响,制取含不同长度初始裂隙的充填砂浆节理岩体试样,在单轴压缩作用下研究含裂隙充填节理岩体的压剪断裂机制及初始裂隙尺寸对节理岩体破裂模式和断裂能的影响规律。试验结果表明:(1)单轴压缩作用下,充填节理岩体的失稳过程分为断裂和摩擦两阶段,前者为节理内裂隙的起裂、扩展到贯通过程,峰值强度后承载力迅速降低,之后因宏观破裂面的压剪摩擦作用而出现强化现象,直至剪应力达到其抗剪强度而失稳破坏;(2)随着充填体内初始裂隙长度增大,试样峰值荷载线性减小,峰值脆性断裂特征更加明显;(3)无初始裂隙节理试样破裂过程中裂隙在节理内分布均匀,而含初始裂隙试样断裂从裂隙尖端开始,向充填体和花岗岩块体黏接面扩展贯通,充填体内裂隙集中而密度较低;(4)采用节理韧带体积Vjc改进断裂能计算公式,计算充填节理岩体压剪断裂能Gf-V;基于充填节理的断裂机制,提出局部断裂能gf-V沿韧带双线性分布的前边界效应模型,解释了平均断裂能Gf-V随初始裂隙长度增大而减小的原因,试验结果验证了模型的正确性。  相似文献   

9.
非贯通节理复杂的起裂机制与破坏模式对岩体力学行为有着重要的影响。考虑节理倾角与贯通度的影响,基于花岗岩试样单轴压缩试验,分析非贯通节理对岩体力学特性及断裂特征的影响,结合三维离散元数值模型,从细观尺度研究裂纹起裂、贯通破坏过程与岩体宏观破坏的相关性,并建立含非贯通节理的断裂力学理论模型,引入应力强度因子一般表达式,分析非贯通节理的断裂韧性,量化节理倾角与贯通度对岩体抗脆断能力的影响。结果表明:非贯通节理对岩体造成的劣化效应显著,随着倾角的增加,节理岩体强度增加。根据裂纹形态与形成机制,区分了6种裂纹,发现节理试样的起裂破坏模式对强度特征影响显著。15°~75°范围内,试样的断裂韧度随节理倾角的增大有不断增大的趋势,其中,15°节理试样抗脆断能力最弱;随节理贯通度的增大,节理岩体的断裂韧性近似双曲线趋势减小。  相似文献   

10.
断续节理岩体模型试验及强度分析研究   总被引:1,自引:0,他引:1  
采用理论分析同模型试验相结合的方法对共面闭合断续节理岩体的直剪强度特性进行研究。理论分析方面,引入法向变形协调条件,推导了模型的直剪强度公式。模型试验发现,全应力应变曲线主要经历了线弹性增长、节理面错动、次生裂纹起裂稳态扩展、节理面贯通破坏和残余强度五个阶段;峰值和残余强度都随正应力的增大而增大,而变形特性随正应力的变化规律性不强;峰值强度随节理连通率的增大而减小,低连通率时强度下降速度慢;节理两边分布的试样的强度普遍高于节理在中间的。对比发现,理论计算结果与试验值吻合较好。  相似文献   

11.
工程岩体一般都含有各种不同级别的地质构造节理和软弱面,使得岩体的强度弱化。含有节理的岩体和完整岩石具有完全不同的力学性质。本文在三轴压缩试验的基础上,对不同节理倾角的三峡库区砂岩开展研究,探讨其变形及破坏特征。试验结果表明:①在同种围压下,节理岩样峰值强度的大小关系为:σ60°30°90°完整。②相同围压下,完整岩样弹性模量及变形模量均高于节理岩样,随着围压升高,岩样弹性模量和变形模量逐渐增大,其增长速度随围压增大而逐渐降低。③在低围压下(<5 MPa),节理倾角对岩样弹性模量和变形模量影响较大,相比完整岩样有较大幅度地降低,其中30°倾角和60°倾角岩样降低程度较高,弹性模量最高达31%,变形模量最高达40%;随着围压增大(大于10 MPa),节理倾角对岩样变形参数影响逐渐减小,相比完整岩样,节理岩样弹性模量降低幅度小于15%,变形模量降低幅度小于10%。④节理倾角和围压对岩石的破坏机制均有较大的影响,节理倾角及围压不同,岩样破坏形式不同。  相似文献   

12.
针对贯通节理岩体动态变形特点并结合已有岩石动态本构模型的相关研究成果,将贯通节理岩体变形过程中的动态应力视为贯通节理岩体静态应力分量与相应动态应力分量的叠加。其中贯通节理岩体静态应力分量采用考虑岩石细观损伤的非线性元件、节理面闭合及剪切变形元件等3个基本元件的串联来模拟,动态应力分量采用黏性元件来模拟,从而建立了贯通节理岩体动态单轴压缩损伤本构模型。其次,根据贯通节理岩体在单轴压缩荷载下往往会沿节理面发生剪切破坏的特点,在前述已建立的损伤本构模型中引人节理剪切破坏准则对该模型进行修正,从而更好地考虑了节理剪切强度对该模型的影响,最终建立了考虑节理剪切强度的贯通节理岩体单轴压缩损伤本构模型。最后利用该模型对贯通节理岩体在压缩荷载作用下的力学特性进行了分析计算,重点讨论了节理倾角对岩体单轴动态压缩峰值强度的影响规律。研究结果表明随着节理倾角的变化,节理岩体将发生岩块张拉或剪切破坏、沿节理面的剪切破坏及上述两种破坏模式的复合破坏,相应地节理岩体的单轴压缩动态峰值强度也随之有较大变化。  相似文献   

13.
节理充填对节理力学性质具有重要影响,为研究砂粒充填对节理抗剪强度的影响,利用GCTS(RDS-200型)岩石剪切系统对4种粒径砂粒充填的粉晶大理岩节理进行了直剪试验。结果表明:未充填节理剪切应力-位移全程曲线可分为压缩阶段、弹性阶段、屈服阶段、软化阶段和残余阶段,而充填节理剪切应力-位移全程曲线则仅有压缩阶段和硬化阶段,表现出松砂剪切曲线特征;相同法向应力下,4种粒径砂粒充填节理峰值剪切应力明显降低。多层铺设3种较细粒径砂粒的充填对节理粘聚力和内摩擦角的影响基本相同,粘聚力和内摩擦角均降低,且粘聚力降低更为明显;单层铺设的最大粒径砂粒使节理的粘聚力降低,内摩擦角增加。研究结论对理解充填节理岩体稳定性具有一定帮助。  相似文献   

14.
非贯通节理岩体是同时含有节理、裂隙等宏观缺陷及微裂隙、微孔洞等细观缺陷的复合损伤地质材料,基于此提出了在非贯通节理岩体动态损伤本构模型中应同时考虑宏、细观缺陷的观点。首先对基于细观动态断裂机理的经典动态损伤本构模型——TCK模型进行了阐述,其次针对目前节理岩体损伤变量定义中仅考虑节理几何参数而未考虑其强度参数的不足,基于能量原理和断裂力学理论推导得出了同时考虑节理几何及强度参数的宏观损伤变量(张量)的计算公式;第三,基于Lemaitre等效应变假设推导了综合考虑宏、细观缺陷的复合损伤变量(张量);第四,借鉴前人基于复合材料力学的观点,考虑了节理法向及切向刚度等变形参数对岩体动态力学特性的影响,进而建立了基于TCK模型的非贯通节理岩体单轴压缩动态损伤本构模型。并利用该模型讨论了载荷应变率、节理内摩擦角、节理厚度、节理法向及切向刚度和节理倾角等对岩体动态力学特性的影响规律。计算结果与目前的理论及试验研究结果比较吻合,从而说明了该模型的合理性。  相似文献   

15.
在库水位周期性升降作用下,库水消落带节理岩体的损伤劣化很可能导致库岸边坡向不稳定的方向发展。基于此,开展了断续节理砂岩的水–岩作用试验,结合力学试验和微细观结构检测综合分析其劣化规律及机理。结果显示:(1)在长期水–岩作用过程中,断续节理岩样的抗压强度、变形模量劣化趋势明显,而且存在明显非均匀性,其中前3个水-岩作用周期的阶段劣化度明显较大,5个水–岩作用周期之后的阶段劣化度明显减小并趋于稳定。(2)水–岩作用下,不同节理倾角岩样的力学参数劣化幅度不一样,阶段劣化度总体呈U型分布,节理倾角在0°和90°附近时,节理岩样从明显的张性破坏逐渐向剪性破坏转变,破坏模式变化特征比较明显,对应力学参数劣化幅度较大;节理倾角为60°左右时,节理岩样总体保持顺节理面的剪切破坏,破坏模式变化特征不明显,对应力学参数劣化幅度比较小,这些变化也使得节理岩样各向异性力学特征逐渐减弱。(3)在水库长期运行过程中,消落带节理岩体的产状直接影响水–岩作用的劣化趋势和变形破坏特征,因此,在库岸边坡长期变形稳定分析中,不仅要关注消落带岩体力学性质的劣化,也要关注节理岩体的产状差异及其在水–岩作用下变形破坏模式的转化。  相似文献   

16.
依据最小余能原理,在考虑节理岩体中锚杆剪切变形的基础上,分析了节理面水平剪切位移与锚杆轴向及切向变形之间的关系。结合锚杆受力特点拟定了锚杆屈服模式的判定流程。建立了考虑"等效剪切面积"的加锚节理面抗剪强度理论计算模型,并通过室内物理试验验证了理论计算模型的准确性。讨论了锚杆倾角、围岩抗压强度、锚杆直径、法向应力等因素对加锚节理面抗剪强度的影响规律。结果表明:所建立的锚杆剪切力学模型能够较好的反映锚杆轴向力及剪切力对节理面抗剪强度的贡献;考虑"等效剪切面积"的加锚节理面抗剪强度计算结果与试验结果较为吻合;锚杆倾角及围岩抗压强度越大,锚杆轴向力越小,剪切力越大;锚杆直径增大,锚杆轴向力及剪切力都会增大;节理面法向应力会显著影响剪胀效应,法向应力越大,节理面抗剪强度越高。  相似文献   

17.
通过含一组预置张开裂隙石膏试件的单轴压缩试验,系统地研究了当节理连通率固定时,节理组的间距和倾角对试件强度和变形特性的影响。研究发现:①随着节理间距的增大,试件的应力-应变曲线的由单峰型变为多峰型,延性增大。试验中观察到的应力-应变曲线包括4种类型,单峰型、软化段多峰型、多峰平台后软化型和多峰平台后硬化型。②当节理间距不变时,试件的当量化强度、当量化弹性模量和第一峰值应变随节理倾角的变化曲线都呈V型,其最小值发生在节理倾角为45°处;而残余强度与强度之比和第二峰值应变随节理面倾角的变化规律则反之。③当节理倾角不变时,当量化弹模、当量化强度和第一峰值应变都随节理化系数的增大而减小;而残余强度与强度之比和第二峰值应变则反之。④各节理倾角下,试件的当量化弹模和当量化强度随节理化系数的变化规律可以用相同形式的幂函数来表示。⑤上述宏观力学行为与预制节理闭合、次生裂隙发展等细观损伤力学机制密切相关。上述研究表明,节理间距对岩体的强度和变形特性的影响有显著的各向异性。  相似文献   

18.
顺层隧道的破坏模式及稳定性与岩体节理特性密切相关。建立顺层隧道的节理岩体模型,采用有限元强度折减法,研究了当顺层隧道围岩为硬质岩层、硬质岩软质岩互层时,节理倾角变化以及节理间距变化对隧道破坏模式及稳定性的影响。结果表明,顺层隧道开挖后,顺层面方向围岩会顺着节理面滑移,垂直层面方向围岩会产生弯曲折断破坏。当节理倾角变化时,两个方向的破坏程度和破坏范围会随之发生变化,从而影响隧道的安全系数,倾角40°时安全系数达到峰值。当隧道围岩为硬质岩层时,节理倾角的变化对隧道围岩的破坏模式影响较小,当隧道围岩为硬软互层时,随着节理倾角的增大,软质岩顺着节理面滑移的可能性大大增加。当节理间距增大时,隧道围岩宏观力学性质逐渐趋向于岩石,安全系数逐渐增大。研究成果对于合理设计顺层隧道的支护措施具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号