首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究晶体取向对单晶γ-Ti Al合金纳米切削过程的影响,采用分子动力学数值方法对不同切削晶向下的切削力、切削温度、材料去除及晶格结构变化进行分析和探讨,揭示不同的晶体取向对单晶γ-Ti Al合金纳米切削质量作用机制。结果表明:在纳米切削过程中,随着晶面和晶向的变化,切削力、切削温度、材料去除和晶格结构都会有不同程度的变化;选择(010)晶面作为切削平面时切削力较小,产生的切削热较少,γ-Ti Al合金表面加工质量较好,晶格结构转变较少;(010)[100]切削晶向下工件产生的切削热较少且最容易切削,晶格结构转变最少,γ-Ti Al合金表面加工质量最优。  相似文献   

2.
采用纳米压痕仪对单晶锗进行变载荷纳米划痕实验和恒定载荷纳米划痕实验,分析不同划痕速度和不同载荷对单晶锗切削特性的影响规律;采用原子力显微镜对样品表面进行扫描观测,分析单晶锗微纳米尺度切削加工的材料去除机理。研究结果表明:划痕速度分别为10、20和50μm/s时,单晶锗(100)晶面脆塑转变临界切削力分别为10.2、12.1和9.8 mN,呈现先增大后减少的规律;单晶锗(110)晶面脆塑转变临界切削力分别为9.5、7.7和6.9 mN,呈现随着划痕速度的增大而减少的规律;单晶锗(111)晶面脆塑转变临界切削力分别为8.3、8.5和8.9m N,划痕速度的改变对于切削力的变化基本没有影响;当载荷分别为10、30和50m N时,单晶锗(110)晶面切削力分别为0.3、4.5和12.5 m N。随着划痕速度的增大,单晶锗不同晶面切削特性表现出明显的各向异性;随着载荷的增大,单晶锗切削力也相应增大,切削力的波动范围也越来越大。本研究为分析单晶锗微纳米尺度塑性域切削提供理论基础和数据支持。  相似文献   

3.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100), (110), (111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400K以上。在三个不同的晶面中,(111)晶面的切削温度最高,其根本原因是由于不同晶面间的原子空间结构不同,(111)晶面的原子密度最大即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。  相似文献   

4.
为了分析磨削过程中单晶γ-TiA l合金的材料去除机制,建立了双磨粒磨削Ti-Al合金的分子动力学模型。揭示了金刚石磨粒的横向间距和纵向间距对单晶γ-TiA l合金材料去除机制的影响。结果表明:单晶γ-TiA l合金的微切削过程中伴随有温度、势能、位错的变化以及晶格结构的转变;切削力、切削温度、势能以及去除效率随着横向间距的增加而增大,但受纵向间距的影响较小;晶格转变的原子数随横向间距的增加而增大,随纵向间距的增加而减小;随着横向间距和纵向间距的增加,位错数量、位错总长度以及位错密度相应增大。  相似文献   

5.
为了分析磨削过程中单晶γ-TiA l合金的材料去除机制,建立了双磨粒磨削Ti-Al合金的分子动力学模型。揭示了金刚石磨粒的横向间距和纵向间距对单晶γ-TiA l合金材料去除机制的影响。结果表明:单晶γ-TiA l合金的微切削过程中伴随有温度、势能、位错的变化以及晶格结构的转变;切削力、切削温度、势能以及去除效率随着横向间距的增加而增大,但受纵向间距的影响较小;晶格转变的原子数随横向间距的增加而增大,随纵向间距的增加而减小;随着横向间距和纵向间距的增加,位错数量、位错总长度以及位错密度相应增大。  相似文献   

6.
单晶镍基合金在拉伸蠕变期间的组织演化与分析   总被引:1,自引:0,他引:1  
通过[001]取向镍基单晶合金拉伸蠕变期间的组织形貌观察,采用应力应变有限元方法计算出立方γ/γ′两相共格界面的vonMises应力分布,研究了合金在蠕变期间γ′相的定向粗化规律。结果表明,施加拉应力可改变立方γ/γ′两相的应力分布,使不同晶面发生晶格收缩与扩张应变,其中,(001)晶面产生晶格收缩可排斥较大半径的Al、Ti原子,(100)和(010)晶面沿平行于应力轴方向产生晶格扩张应变,可诱捕较大半径的Al、Ti原子,是使其γ′相沿扩张晶格的法线定向生长成为类似筛网层状结构的组织演化规律。并进一步提出蠕变期间发生元素扩散和γ′相定向生长的驱动力。  相似文献   

7.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100),(110),(111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460 K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400 K以上。在3个不同的晶面中,(111)晶面的切削温度最高,(111)晶面的原子密度最大,即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。  相似文献   

8.
采用弹塑性应力-应变有限元方法计算了[111]取向镍基单晶合金中γ/γ′两相共格界面的von Mises应力及应变能密度分布,研究了施加拉应力对γ/γ′两相界面von Mises应力分布及γ′相定向粗化规律的影响.结果表明:[111]取向镍基单晶合金经热处理后,组织结构是立方γ′相以共格方式嵌镶在γ基体相中,沿(100)方向规则排列.当沿[111]取向施加拉应力蠕变期间,与近(010)γ′晶面的基体通道相比,近(001)γ′和(100)γ′晶面的基体通道有较大的von Mises应力,在主应力分量的作用下,(100)和(001)晶面分别沿[001],[010]和[010],[100]方向发生较大的晶格扩张应变,可诱捕较大半径的Al和Ti原子,这是促使γ′相在(010)面沿[001]和[100]方向定向生长成为层片结构的筛网状筏形组织的主要原因.  相似文献   

9.
纳米切削会造成工件的内部微观缺陷,这种缺陷会引起残余应力的变化进而影响工件的表面质量,而这种缺陷结构与切削层初始温度有密切联系。为降低工件纳米切削加工制造中的缺陷,采用分子动力学的方法,构建了含有切削层的单晶铜纳米切削模型。首先,通过分析工件结构体积及微观缺陷的变化确定了切削层的适用初始温度;其次,分析了切削层初始温度对切削力的影响,并在不同初始温度和切削力作用下对单晶铜位错和晶格等微观结构的变化进行了分析;最后,通过实验对仿真结果进行了间接验证。结果表明:单晶铜切削层初始温度的可选范围为293~400 K;在此范围内,随着切削层初始温度的升高,切削力大小变化显著,但波动平稳,晶格结构的转变速度也随之增快;当切削层初始温度设为360~390 K范围内时,单晶铜工件的表层微观缺陷相对较少,由此可预测单晶铜工件在此初始温度范围内加工得到的表面质量较高。  相似文献   

10.
在1040℃,137MPa下对[011]取向镍基单晶合金进行蠕变曲线测定,采用SEM观察热处理及蠕变后样品不同晶面的组织形貌,研究了[011]取向镍基单晶合金在蠕变期间的组织演化特征,并分析了组织演化的规律及影响因素。结果表明:取向差为4°的[011]取向镍基单晶合金经完全热处理后,组织是立方γ′相以共格方式嵌镶在γ基体相中,并沿<100>取向规则排列;在拉伸蠕变期间,合金中γ′相转变成与[001]取向平行的纤维状筏形组织。由于施加拉伸载荷,使立方γ′相中的(100)晶面及γ基体相承受挤压力,可排斥较大半径的Al、Ta原子,而在(001)晶面产生较大的晶格扩张应变,可诱捕较大半径的Al、Ta原子,因而促使γ′相沿[001]取向定向生长成为纤维状筏形组织。在外加应力作用下,不同晶面γ′/γ两相界面的应变能密度变化是促使发生元素扩散和γ′相定向粗化的驱动力。  相似文献   

11.
采用弹/塑性应力-应变有限元方法计算了[011]取向单晶镍基合金中γ /γ’ 两相共格界面的von Mises应力及应变能密度分布特征,研究了施加压应力对γ /γ’ 两相界面von Mises应力分布及γ’相定向粗化规律的影响。结果表明:[011]取向单晶镍基合金经热处理后,组织结构是立方γ’相以共格方式嵌镶在γ基体相中,并沿<100>γ方向规则排列。当沿[011]方向施加压应力时,(100)晶面沿[001]γ和[010]γ方向发生晶格收缩,其晶格收缩的挤压作用可排斥半径较大的Al、Ti原子,而在(010)和(001)晶面则分别沿[100]取向发生晶格扩张应变,可诱捕半径较大的Al、Ti原子,是促使γ’相在(100)晶面交错生长成网状结构,并沿[010]和[001]取向扩散连接,生长成为相互垂直的层片网状筏形组织的主要原因。  相似文献   

12.
基于晶体塑性理论和有限元方法,利用ABAQUS/UMAT二次开发接口,采用FORTRAN语言开发γ-Ti Al合金晶体塑性本构关系子程序,建立综合考虑位错滑移、形变孪晶和晶界效应的γ-Ti Al合金双晶体模型,模拟常温下不同晶粒取向差(2°、5°、8°、30°、45°和60°)与晶界效应对γ-Ti Al合金塑性变形的影响。结果显示:晶界的存在和晶粒取向差异会导致双晶体变形的不均匀性,在晶界处出现应力集中现象,且晶界区域表现出与晶粒内部区域不同的力学性质。晶界区域的受力状态受到相邻晶粒的影响,晶界角度较小时,两个晶粒滑移系的累积剪切变形较为协调,双晶体整体的塑性变形较为均匀。  相似文献   

13.
为探究非晶层结构对单晶锗纳米切削机制和力学特性的影响,采用分子动力学方法模拟不同非晶层厚度的非晶-晶体层状结构(A-C模型)的纳米切削过程.对纳米加工中切削力波动规律,应力状态,亚表面损伤和材料去除等关键问题进行分析.结果 表明:非晶锗(A-Ge)厚度的增加使得切削力和应力减小,切削温度升高;材料的可塑性随着A-Ge厚...  相似文献   

14.
采用分子动力学软件Lammps研究金刚石刀具微纳米切削单晶镍的微观动态过程,分析不同切削方向和不同切削深度下单晶镍微纳米切削过程中缺陷的类型、切削力和损伤的关系以及位错线的演化规律。结果表明:刀具的挤压和剪切作用使单晶镍工件产生高压相变区和非晶区,其亚表层存在原子团簇和位错滑移。沿[100]晶向切削,切削力最小,且位错损伤层厚度最小为2.15 nm;沿[111]晶向切削,表面层的质量最好,但损伤层厚度最大为3.75 nm。切削过程中,位错线的总长度整体呈上升趋势,[110]方向去除的原子区域最大,位错线长度最大。切削深度越大,晶体内部的位错滑移和非晶化越严重。  相似文献   

15.
研究了纯Ni、Ni-12%Cr和DD483合金分别作为籽晶定向生长镍基单晶高温合金的凝固过程。结果表明,纯Ni和Ni-12%Cr籽晶的凝固界面历经平界面—胞状界面—枝晶界面的转变过程,采用树枝晶的DD483籽晶时,凝固界面直接由籽晶重熔区进入枝晶生长阶段。单晶高温合金的晶体取向延续了籽晶的晶体取向,但纯Ni籽晶/高温合金界面处的晶体取向发生小角度偏转。分析认为,这是由于成分突变引起γ相的晶格常数发生变化所造成的。  相似文献   

16.
本文运用分子动力学方法对单晶γ-TiAl合金重复纳米切削过程进行了模拟,研究了重复纳米切削过程中的切削力和微观组织缺陷演化,分析了已加工表面的粗糙度和残余应力,讨论了重复纳米切削和单次切削之间的差异。结果表明:重复纳米切削伴随着位错的形成和湮灭,第二次切削过程中的位错线长度波动小于第一次切削,切削状态更稳定;加工初始阶段的切削力迅速增大,随后切削力进入稳定加工阶段。同时发现,第二次切削的切削力小于第一次切削的切削力;二次切削后,残余应力分布更加均匀,且刀具的二次挤压作用使得加工表面层残余压应力增大;二次切削加工可以提高表面质量和降低亚表面损伤,而残余压应力的增大及加工所需能量的增加降低了已加工表面的可塑性,使得第三次切削加工对二者没有明显改善。  相似文献   

17.
采用分子动力学模拟方法研究了含空位缺陷的γ-TiAl合金在不同晶向下的拉伸行为。通过一系列模拟分析了空位和晶格取向对力学性能和微观缺陷演化的影响。结果表明,晶向对Ti和Al空位的临界应力有明显的影响。含Ti空位模型的屈服应力高于含Al空位模型。在单晶γ-TiAl合金的变形过程中,发现位错密度与堆叠错数具有相同的变化趋势。此外,还讨论了温度对屈服强度的影响。随着温度的升高,材料的极限应力呈非线性下降,弹性模量明显降低。温度越高,晶体向和空位缺陷对极限应力的影响越小。  相似文献   

18.
徐亚萌  周海  张杰群  李永康  沈军州 《表面技术》2021,50(4):244-252, 284
目的 分析单晶氧化镓在纳米尺度下的摩擦磨损性能,为金刚石磨料对氧化镓晶体的精密研磨加工提供理论依据.方法 在G200纳米压痕仪上,使用Cube Corner金刚石压头,对单晶氧化镓的(010)和(100)晶面进行了摩擦磨损试验,利用原子力显微镜观测试验后的形貌并测量尺寸.结果 在金刚石以不同速度摩擦单晶氧化镓时,(010)和(100)晶面的划痕宽度与摩擦速度的拟合直线的斜率分别4.05769和7.63462,深度与摩擦速度拟合直线的斜率分别为0.82073和0.79862.以不同载荷摩擦氧化镓时,(010)和(100)晶面的划痕宽度与载荷的拟合直线的斜率分别为47.625和46.750,深度与载荷拟合直线的斜率分别为23.764和31.9546.在多次重复摩擦磨损试验中,摩擦次数从1次增加到10次,划痕的深度从571.22 nm增加到2964.81 nm,划痕宽度从889.34 nm增加到7360 nm.结论 在干摩擦状态下,金刚石压头的摩擦速度对氧化镓的摩擦系数、磨损影响不大.在低载荷下,氧化镓的磨损以塑性变形引起的材料去除为主,在载荷增大到一定值时,磨损转变为脆性材料去除的形式,出现裂纹、剥落和碎屑等,磨损增大.氧化镓(100)晶面由于硬度低、易解理,比(010)晶面更容易磨损.  相似文献   

19.
在本文,通过分子动力学模拟方法建立了单晶γ-TiAl合金的纳米切削模型和拉伸模型,其主要分析不同的切削深度对工件拉伸性能的影响。一方面,详细的研究了晶格转变和微观缺陷演化之间的关系;另一方面,系统的探讨了不同的切削深度对应力-应变曲线、位错形核位置和工件断口位置的影响。研究结果表明:在纳米切削阶段,晶格转变的数量会随着切削深度的增加而增多并且与微观缺陷演化具有一致性。在一定的切削深度范围内工件的屈服应力和弹性模量会相应的提高。另外,切削深度对工件的位错形核位置和断口位置有较大影响,经过加工的工件位错形核于工件的亚表面,而未经过加工的位错形核于工件的边界处,工件的断口位置随着切削深度的增加越靠近拉伸端。  相似文献   

20.
针对SiC_p/Al复合材料因脆性相SiC的加入而导致难以形成高质量加工表面等问题,采用分子动力学模拟和超精密车削试验的方法对SiC_p/Al复合材料纳米尺度材料去除过程进行研究,重点分析了单晶金刚石超精密切削SiC_p/Al复合材料中的加工表面形成机理、脆塑性转变以及刀具磨损机理。结果表明:高压相变是引起SiC_p/Al复合材料中SiC脆性材料的脆塑性转变的主要原因。随着切削深度的增加,SiC_p/Al复合材料中SiC颗粒加工方式由延性去除,到脆塑性混合方式去除,最后演变为纯脆性去除方式。SiC_p/Al复合材料中SiC-Al界面和Al基体存在,影响了SiC_p/Al复合材料中SiC颗粒去除的脆塑性转变机制。待加工表面上拉应力的存在会诱导微裂纹尖峰,是切削区域脆性SiC材料裂纹萌生的直接诱因。单晶金刚石刀具主要磨损机理为硬质SiC颗粒的磨粒磨损和切削诱导的石墨化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号