首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100), (110), (111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400K以上。在三个不同的晶面中,(111)晶面的切削温度最高,其根本原因是由于不同晶面间的原子空间结构不同,(111)晶面的原子密度最大即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。  相似文献   

2.
为了进一步研究单晶锗的微纳米切削机理,首次采用分子动力学方法研究了材料原子的应力场分布以及不同刀具角度对应力分布的影响。采用近邻平均法计算了切削过程中不同时刻的hydrostatic应力和von Mises平均应力值。结果表明,在单晶锗的纳米切削过程中,最大平均应力集中于刀具尖端的亚表面区域,最大应力值为8.6Gpa。在切屑中也有很高的应力值,在4.2GPa左右。此外,刀具的角度也对应力场的分布有很大影响,绘制了不同刀具角度的切削力曲线。发现,刀具前角对切削力有显著影响。刀具采用负前角切削时切削力最大,而刀具后角对切削力没有影响,这与宏观切削理论相一致。  相似文献   

3.
采用纳米压痕仪对单晶锗进行变载荷纳米划痕实验和恒定载荷纳米划痕实验,分析不同划痕速度和不同载荷对单晶锗切削特性的影响规律;采用原子力显微镜对样品表面进行扫描观测,分析单晶锗微纳米尺度切削加工的材料去除机理。研究结果表明:划痕速度分别为10、20和50μm/s时,单晶锗(100)晶面脆塑转变临界切削力分别为10.2、12.1和9.8 mN,呈现先增大后减少的规律;单晶锗(110)晶面脆塑转变临界切削力分别为9.5、7.7和6.9 mN,呈现随着划痕速度的增大而减少的规律;单晶锗(111)晶面脆塑转变临界切削力分别为8.3、8.5和8.9m N,划痕速度的改变对于切削力的变化基本没有影响;当载荷分别为10、30和50m N时,单晶锗(110)晶面切削力分别为0.3、4.5和12.5 m N。随着划痕速度的增大,单晶锗不同晶面切削特性表现出明显的各向异性;随着载荷的增大,单晶锗切削力也相应增大,切削力的波动范围也越来越大。本研究为分析单晶锗微纳米尺度塑性域切削提供理论基础和数据支持。  相似文献   

4.
纳米切削会造成工件的内部微观缺陷,这种缺陷会引起残余应力的变化进而影响工件的表面质量,而这种缺陷结构与切削层初始温度有密切联系。为降低工件纳米切削加工制造中的缺陷,采用分子动力学的方法,构建了含有切削层的单晶铜纳米切削模型。首先,通过分析工件结构体积及微观缺陷的变化确定了切削层的适用初始温度;其次,分析了切削层初始温度对切削力的影响,并在不同初始温度和切削力作用下对单晶铜位错和晶格等微观结构的变化进行了分析;最后,通过实验对仿真结果进行了间接验证。结果表明:单晶铜切削层初始温度的可选范围为293~400 K;在此范围内,随着切削层初始温度的升高,切削力大小变化显著,但波动平稳,晶格结构的转变速度也随之增快;当切削层初始温度设为360~390 K范围内时,单晶铜工件的表层微观缺陷相对较少,由此可预测单晶铜工件在此初始温度范围内加工得到的表面质量较高。  相似文献   

5.
采用分子动力学软件Lammps研究金刚石刀具微纳米切削单晶镍的微观动态过程,分析不同切削方向和不同切削深度下单晶镍微纳米切削过程中缺陷的类型、切削力和损伤的关系以及位错线的演化规律。结果表明:刀具的挤压和剪切作用使单晶镍工件产生高压相变区和非晶区,其亚表层存在原子团簇和位错滑移。沿[100]晶向切削,切削力最小,且位错损伤层厚度最小为2.15 nm;沿[111]晶向切削,表面层的质量最好,但损伤层厚度最大为3.75 nm。切削过程中,位错线的总长度整体呈上升趋势,[110]方向去除的原子区域最大,位错线长度最大。切削深度越大,晶体内部的位错滑移和非晶化越严重。  相似文献   

6.
为了研究晶体取向对单晶γ-Ti Al合金纳米切削过程的影响,采用分子动力学数值方法对不同切削晶向下的切削力、切削温度、材料去除及晶格结构变化进行分析和探讨,揭示不同的晶体取向对单晶γ-Ti Al合金纳米切削质量作用机制。结果表明:在纳米切削过程中,随着晶面和晶向的变化,切削力、切削温度、材料去除和晶格结构都会有不同程度的变化;选择(010)晶面作为切削平面时切削力较小,产生的切削热较少,γ-Ti Al合金表面加工质量较好,晶格结构转变较少;(010)[100]切削晶向下工件产生的切削热较少且最容易切削,晶格结构转变最少,γ-Ti Al合金表面加工质量最优。  相似文献   

7.
为了研究晶体取向对单晶γ-Ti Al合金纳米切削过程的影响,采用分子动力学数值方法对不同切削晶向下的切削力、切削温度、材料去除及晶格结构变化进行分析和探讨,揭示不同的晶体取向对单晶γ-Ti Al合金纳米切削质量作用机制。结果表明:在纳米切削过程中,随着晶面和晶向的变化,切削力、切削温度、材料去除和晶格结构都会有不同程度的变化;选择(010)晶面作为切削平面时切削力较小,产生的切削热较少,γ-Ti Al合金表面加工质量较好,晶格结构转变较少;(010)[100]切削晶向下工件产生的切削热较少且最容易切削,晶格结构转变最少,γ-Ti Al合金表面加工质量最优。  相似文献   

8.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,采用三维分子动力学(MD)模拟方法研究了单点金刚石压头与单晶锗表面的接触和滑动过程。研究了压头在滑动切削过程中的材料变形、切削力、切屑堆积、表面形貌尺寸。仿真结果表明,随着垂直载荷的增加,切削力、表面形貌尺寸、切屑堆积在接触过程中逐渐增加,且与切削速度无明显关联。切削过程中切削力波动的根本原因是由于单晶锗晶格破坏引起位错的产生和能量波动。为了验证仿真结果的正确性,使用纳米划痕仪对单晶锗进行了纳米切削实验。实验结果与仿真结果一致,验证了MD模型的正确性和有效性。  相似文献   

9.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,采用三维分子动力学(MD)模拟方法研究了单点金刚石压头与单晶锗表面的接触和滑动过程。研究了压头在滑动切削过程中的材料变形、切削力、切屑堆积、表面形貌尺寸。仿真结果表明,随着垂直载荷的增加,切削力、表面形貌尺寸、切屑堆积在接触过程中逐渐增加,且与切削速度无明显关联。切削过程中切削力波动的根本原因是由于单晶锗晶格破坏引起相变的产生和能量波动。为了验证仿真结果的正确性,使用纳米划痕仪对单晶锗进行了纳米切削实验。实验结果与仿真结果一致,验证了MD模型的正确性和有效性。  相似文献   

10.
为探究非晶层结构对单晶锗纳米切削机制和力学特性的影响,采用分子动力学方法模拟不同非晶层厚度的非晶-晶体层状结构(A-C模型)的纳米切削过程.对纳米加工中切削力波动规律,应力状态,亚表面损伤和材料去除等关键问题进行分析.结果 表明:非晶锗(A-Ge)厚度的增加使得切削力和应力减小,切削温度升高;材料的可塑性随着A-Ge厚...  相似文献   

11.
采用分子动力学方法研究了材料原子的应力场分布以及不同刀具角度对应力分布的影响。采用近邻平均法计算了切削过程中不同时刻的hydrostatic应力和von Mises平均应力值。结果表明,在单晶锗的纳米切削过程中,最大平均应力集中于刀具尖端的亚表面区域,最大应力值为8.6 GPa。在切屑中也有很高的应力值,在4.2 GPa左右。此外,刀具的角度也对应力场的分布有很大影响,绘制了不同刀具角度的切削力曲线。发现,刀具前角对切削力有显著影响。刀具采用负前角切削时切削力最大,而刀具后角对切削力没有影响,这与宏观切削理论相一致。  相似文献   

12.
基于大规模并行算法建立了单晶Cu纳米加工新型三维分子动力学仿真模型,采用Tersoff势、嵌入原子势(embeddedatom method,EAM)和Morse势分别描述刀具原子之间、工件原子之间和工件与刀具原子之间的相互作用.研究了纳米加工过程中系统的温度分布及其热效应的影响,从位错和温度的角度对切屑形成过程和纳米加工表面的形成机理进行了分析.模拟结果表明:位错的扩展方向和切屑的堆积方向均沿着与切削方向成45°方向(〈110〉晶向)运动;系统的温度分布呈同心形,切屑处温度最高,同时在金刚石刀具中存在较大的温度梯度;随着系统温度升高,工件材料具有热软化效应;切削速度和切削刃钝圆半径对系统的温度分布影响很大.  相似文献   

13.
基于分子动力学的基本原理,构建了钛的纳米切削分子动力学仿真模型。工件原子间采用嵌入原子势EAM(Embedded atom method),工件原子与刀具原子间采用Morse势函数,研究了在不同刃口半径和刀具前角条件下,钛纳米切削过程中工件形态、系统势能、切削力以及工件温度等的变化规律。结果表明:随着刀具刃口半径增大,加工表面粗糙度增加,切削力和工件温度降低,切屑变薄;当刀具前角由负值增加到正值,钛工件承受的压应力逐渐变为剪应力,正前角刀具更有利于切削,同时在不同的刀具前角下,切向力和法向力的大小也有显著变化。  相似文献   

14.
为了研究锗单晶的压痕尺寸效应,对(100)、(110)和(111)晶面取向的锗单晶进行纳米压痕实验。基于Meyer方程、比例试样阻力(PSR)模型和Nix-Gao模型计算锗单晶各晶面无压痕尺寸效应时的真实硬度值,并基于Manika幂律关系计算锗单晶各晶面的尺寸效应因子。结果表明:锗单晶在加载过程中发生弹性变形、塑性变形和脆性断裂3个阶段,且3个晶面均表现出明显的尺寸效应现象。3种模型均能较好地描述锗单晶的尺寸效应,其中Nix-Gao模型的计算值最为准确。相比于其他两个晶面,Ge (110)的尺寸效应因子m值最高,且具有最高的硬度值,表明该晶面的塑性性能最差。  相似文献   

15.
基于分子动力学的基本原理,构建了钛的纳米切削分子动力学仿真模型。工件原子间采用嵌入原子势EAM(Embedded atom method),工件原子与刀具原子间采用Morse势函数,研究了在不同刃口半径和刀具前角条件下,钛纳米切削过程中工件形态、系统势能、切削力以及工件温度等的变化规律。结果表明:随着刀具刃口半径增大,加工表面粗糙度增加,切削力和工件温度降低,切屑变薄;当刀具前角由负值增加到正值,钛工件承受的压应力逐渐变为剪应力,正前角刀具更有利于切削,同时在不同的刀具前角下,切向力和法向力的大小也有显著变化。  相似文献   

16.
目的 虽然纳米切削是21世纪超精密加工技术的重要发展方向之一,但现有的纳米切削机理仍不完善。因此,采用数值模拟方法,从晶体结构、力学和粒子运动等方面对纳米切削机理进行补全。方法 首先,基于分子动力学方法对纳米尺度下的单晶铜进行了拉伸模拟,总结其在不同温度下的韧脆性特征;其次,对纳米尺度下的单晶铜进行了切削模拟,系统性地研究了切削过程中晶体结构、切削力、应力应变分布,以及原子运动特征在不同材料韧脆性下的变化规律。结果 拉伸模拟结果表明,低温下单晶铜脆性特征显著,但仍具有一定的韧性。随着温度的升高,单晶铜脆性减弱,韧性增强。切削模拟结果表明,靠近工件自由面的材料沿主剪切方向发生持续的剪切滑移和周期性的长距离错动,形成多种晶体结构有序分布的块状切屑。靠近刀具的材料在推挤作用下由晶体结构变为非晶结构,之后持续流动形成切屑。随着切削温度的升高,块状切屑中的长距离错动频率提高,通过剪切形成的块状切屑尺寸减小,而通过推挤形成的流动状切屑厚度增加。结论 切屑的形成方式包括剪切和推挤2种类型。低温下,剪切切屑形成过程占据主导地位,切屑呈现明显的块状。随着温度升高,切屑形成机理从剪切向推挤转变。  相似文献   

17.
朱瑛  马慧婷  樊虎 《机床与液压》2018,46(24):21-26
基于分子动力学的理论建立了单晶铝的纳米切削仿真模型,比较研究了在刀具未磨损和刀具磨损条件下对切削过程的影响。研究表明:相比于刀具未磨损,在刀具磨损的情况下,已加工表面质量有所下降,基体上出现了大量的位错等缺陷;切削力也全部有所升高,其中刃口半径磨损对切削力影响最为显著,在相同的切削条件,相比于刀具未磨损升高约为17.78%,后刀面磨损和前刀面磨损对切削力的影响基本相同,提高了约7.98%;刀具温度和工件的温度也都有不同程度的升高,其中,工件的温升更高。刀具刃口半径磨损对温升影响最大,达到稳定切削时,刀具的平均温度相比于刀具未磨损升高约为7.2%。  相似文献   

18.
为了研究高速切削Inconel 718的切削机理,应用有限元软件DEFORM-2D模拟了高速切削Inconel 718的切削过程,分析了切削速度对切削温度、切削力和剪切角的影响规律以及切削过程中刀具和工件的应力场分布情况.仿真结果表明:切削力随着刀具的切入先迅速线性增大,然后趋于稳定,切削力随切削速度的增大呈下降趋势.切削温度的最高点总是位于前刀面上距离刀刃不远的地方.最高切削温度随着切削速度的增大而增高.最大刀具等效应力出现在前刀面上切削刃的周围,工件上最大等效应力出现在第一变形区.切削过程中,剪切角随切削速度的增加而增大.  相似文献   

19.
采用分子动力学的方法建立了金属钛的纳米振动切削模型,通过切削仿真研究了振动切削参数变化对整个振动切削过程的影响。研究发现:振动频率和振幅的增大会使接触率、切削力及切削温度的数值减小。切削速度增大会使接触率、切削力及切削温度升高,相比对切削力的改变,在切削速度小于100m/s的情况下对切削温度的影响效果更显著。刀具刃口半径的增大会使切削过程中已加工面的变质层厚度增加,表面粗糙度增大,切削力与切削温度的数值随刃口半径的增大而增加,当刃口半径跟切削厚度之比大于1时,背吃刀力及切削温度提升的速率更快。  相似文献   

20.
基于分子动力学的理论建立了单晶铝的纳米切削仿真模型,比较研究了在刀具未磨损和刀具磨损条件下对切削过程的影响。研究表明:相比于刀具未磨损,在刀具磨损的情况下,已加工表面质量有所下降,基体上出现了大量的位错等缺陷;切削力也全部有所升高,其中刃口半径磨损对切削力影响最为显著,在相同的切削条件,相比于刀具未磨损升高约为17. 78%,后刀面磨损和前刀面磨损对切削力的影响基本相同,提高了约7. 98%;刀具温度和工件的温度也都有不同程度的升高,其中,工件的温升更高。刀具刃口半径磨损对温升影响最大,达到稳定切削时,刀具的平均温度相比于刀具未磨损升高约为7. 2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号