首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
通过15组配合比研究了不同纤维类型、体积掺量及水胶比对工程水泥基复合材料(engineering cementitious composites, ECC)宏观力学性能(压缩、三点抗弯)的影响,并从宏观及微观尺度分析纤维对ECC的影响机理。结果表明,体积掺量由2%降低至1%时,日产聚乙烯醇纤维(polyvinyl alcohol fiber, PVA) ECC的抗弯强度降低约37.8%,抗压强度降低约5.7%,国产PVA-ECC的抗弯强度降低约48.8%,抗压强度降低约23.4%,PE-ECC的抗弯强度降低约20.6%,PE纤维掺量的改变对ECC的抗压强度几乎没有影响。水胶比由0.25提高至0.29时,日产PVA-ECC的抗压强度下降约32.6%,国产PVA-ECC的抗压强度下降约28.1%,PE-ECC的抗压强度下降约43%。由灰色关联分析可知,影响ECC抗压性能及抗弯性能的主要因素分别为水胶比和纤维体积掺量。  相似文献   

2.
邓明科  代洁  梁兴文  张明玥 《工程力学》2016,33(10):208-217
提出采用高延性混凝土改善梁的抗剪性能和变形能力,设计了8个高延性混凝土梁和3个作为对比试件的混凝土梁,并通过静力试验研究不同剪跨比和配筋率高延性混凝土无腹筋梁的破坏形态和破坏机理。高延性混凝土无腹筋梁的剪切破坏形态有挤压破坏、剪压破坏、弯剪破坏和剪拉破坏。试验结果表明:高延性混凝土梁的剪切破坏均表现出一定的延性,与普通混凝土梁的脆性剪切破坏具有明显不同;高延性混凝土梁的剪切裂缝开展缓慢,说明高延性混凝土良好的拉伸应变硬化和多裂缝开展特性能够有效控制剪切裂缝的发展,防止混凝土压碎剥落,显著提高梁的抗剪性能和耐损伤能力;相比普通混凝土无腹筋梁,高延性混凝土无腹筋梁的受剪承载力和变形能力均有明显提高,表明采用高延性混凝土可以显著改善无腹筋梁的脆性剪切破坏模式;剪跨比和纵筋配筋率对高延性混凝土梁的剪切破坏形态和承载力影响较大,其受剪承载力随剪跨比的增大而降低,随配筋率的增大而有所提高。  相似文献   

3.
为探究泡沫混凝土(Foamed concrete,FC)梁的断裂特性和裂缝扩展过程,采用不同密度和不同初始缝高比的试件,开展不同加载速率下的三点弯断裂试验.结果表明,FC梁的抗弯承载力具有加载速率效应,其峰值荷载随加载速率的上升而增大.但加载速率效应随FC密度的增长逐渐减弱,且初始缝高比越大,加载速率效应越不明显.FC梁抗弯承载力随密度的减小而下降,但其抵抗变形的能力增强.利用ABAQUS建立FC梁的有限元模型,借助扩展有限元方法(Extended finite element method,XFEM)模拟FC梁的裂缝扩展过程,得到其断裂过程的荷载-裂缝张口位移(P-CMOD)曲线.结果表明,数值模拟的结果与试验结果吻合良好,验证了XFEM的合理性和精确性.FC梁在达到峰值荷载前的裂缝开展形式主要为拉伸裂缝,达到峰值荷载后,裂缝进入失稳扩展阶段,剪切裂缝逐渐增多.  相似文献   

4.
采用OpenSees对预应力高强混凝土管桩在轴力和水平荷载共同作用下的受力性能进行了有限元分析。有限元计算结果与试验研究结果吻合较好,模型能较好的反映PHC管桩的受力性能。在此基础上,对PHC管桩在轴力和水平往复荷载作用下的承载力和曲率延性等进行了分析,结果表明,随着PHC管桩承受轴向压力的增加,抗弯承载力增加,但曲率延性降低;轴压比小于0.35时,随着轴力的增加,构件的承载力增加的幅度较大;轴压比大于0.45时,受压区混凝土先于预应力钢筋受拉屈服而被压碎,管桩发生破坏。PHC管桩应用于实际工程中的轴压比宜控制在0.35以内。  相似文献   

5.
寇佳亮  蔡鹏阳  王栋  周恒 《振动与冲击》2022,(8):124-133+178
利用高延性混凝土(high ductile concrete, HDC)良好的黏结性能和裂缝控制能力,对19根达到极限承载力的无腹筋混凝土梁进行加固处理,并对其进行四点弯曲性能试验,研究了HDC加固震损混凝土梁受弯的裂缝开展情况、破坏形态、承载力、挠度及应力变化的影响,分析了不同HDC厚度、配筋率对HDC加固震损混凝土梁的受弯性能影响。试验结果表明:利用HDC加固震损混凝土梁的承载能力得到了明显的提高,峰值荷载最高提升89%;破坏后的裂缝较原梁多且发展完全;提高加固层厚度的加固效果要明显优于提高配箍率;开裂荷载及破坏时的极限挠度分别最大提高了250%和189%,延性得到明显改善;最大裂缝没有发生在界面处,新旧混凝土之间黏结非常好,协同工作性能良好。  相似文献   

6.
在实验室模拟酸雨腐蚀环境,完成了普通混凝土梁与CFRP布增强混凝土梁的抗弯试验,得到了各级荷载作用下构件表面裂缝的分布与演化过程,验证了受腐蚀CFRP布增强混凝土梁表面裂缝分布的分形特征。基于分形理论分析了受腐蚀混凝土梁在弯曲荷载作用下的开裂及破坏过程,详细讨论了梁表面裂缝的分形维数与其抗弯性能参数(损伤深度、混凝土强度、一阶频率、极限承载力、跨中挠度、位移延性系数)之间的关系。研究表明裂缝分形维数随着损伤深度的增加而减小,CFRP布增强混凝土梁的分形维数大于普通混凝土梁,其分形维数变化率与构件承载力变化率之间存在线性关系;因此梁表面裂缝分布的分形特征可作为CFRP布增强混凝土受弯构件损伤程度的衡量指标的观点,可为今后对“在役混凝土结构承载力和寿命预测的研究”提供参考。  相似文献   

7.
实验研究了纤维对水泥基复合材料抗弯性能的影响.结果表明,聚乙烯醇(PVA)纤维增强挤压脱水成型板材在弯曲荷载作用下呈现多点开裂、应变硬化的特性,具有良好的延性,聚丙烯(PP)纤维增强挤压脱水成型板材呈应变软化的特性,木纤维增强挤压脱水成型板材则呈脆性破坏;与普通混凝土梁相比,冷浇和热浇纤维增强板-混凝土组合梁的抗弯强度...  相似文献   

8.
基于钢箱-混凝土组合梁的基本特性,提出了正截面强度设计理论,并分析梁宽厚比、混凝土套箍效应对正截面强度的影响,提出了该类组合截面的合理尺寸选择原则,分析表明钢箱-混凝土组合梁较空箱的承载力有明显提高,其受力性能明显改善。同时进行3根大比例钢箱-混凝土组合梁的模型试验研究,试验研究表明:钢箱-混凝土组合梁具有良好的抗弯性能和延性,极限承载力提高显著。钢箱-混凝土组合梁通过进一步的试验与理论研究有广泛的应用前景。  相似文献   

9.
为了提高加固构件的抗裂性能和极限承载力,提出一种聚乙烯醇纤维增强钢丝网水泥基复合(PVA-RFCC)新型加固材料,是由钢筋网和钢丝网作为增强材料,聚乙烯醇纤维水泥基复合材料(PVA-ECC)作为基体构成.设计7根加固梁和1根对比梁进行四点弯试验,重点探讨了加固层(CRL)厚度对加固梁抗弯性能的影响.同时,对最佳CRL厚度计算表达式进行推导.结果得出:当CRL仅为PVA-ECC或仅含钢丝网(SM)时,试验梁弯曲性能随着CRL厚度增大而降低;当CRL中包含钢筋网(RM)或SM-RM时,试验梁弯曲性能随着CRL厚度的增大而增强.CRL厚度与极限荷载呈二次函数关系,SM-RM是最优加固方式,SM主要提高试验梁延性,RM主要提高试验梁的承载力和刚度.结合试验和理论计算结果,得出CRL为PVA-ECC或仅含SM时,试验梁的最佳CRL厚度为40 mm;仅加RM或SM-RM时,最佳CRL厚度为60 mm.  相似文献   

10.
进行了6根碳纤维布加固已承受荷载的钢筋混凝土梁和2根对比混凝土梁的抗弯性能试验研究,分析了碳纤维布加固已承受荷载的钢筋混凝土梁的破坏机理,研究了荷载历史对加固梁极限荷载的影响。试验结果表明,粘贴碳纤维布可以有效地提高加固梁的抗弯承载能力。无论荷载历史如何,只要梁承受的初始荷载相同,梁破坏时的极限荷载基本相同。梁端锚固对加固梁的极限荷载影响不明显。根据不同的破坏模式,提出了碳纤维布加固已承受荷载的钢筋混凝土梁的承载力计算方法,给出了工程实用计算公式。  相似文献   

11.
为了促进聚乙烯醇(PVA)纤维增强水泥基复合材料(PVA-ECC)在热环境工程领域中的应用,通过狗骨试件拉伸试验,研究了高粉煤灰掺量的PVA-ECC热处理后的力学性能变化;采用单纤维抗拉试验、单纤维拔出试验以及单裂缝拉伸试验研究了PVA-ECC性能提升的机制。结果表明:在不高于200℃的热处理后,PVA-ECC仍能实现多裂缝开裂,相比20℃,50、100、200℃热处理后的PVA-ECC复合材料的拉伸力学性能提高,其幅度为100℃> 50℃> 200℃;纤维强度不是PVA-ECC抗拉性能变化的控制因素,适当的温度处理提高了纤维与基体的化学黏结力和摩擦力,从而提高了纤维的桥接作用和裂缝的余能,进而提高了PVA-ECC的抗拉性能和摩擦耗能能力。PVA-ECC性能变化的机制分析为PVA-ECC工程设计提供了良好的理论基础。   相似文献   

12.
高性能PVA纤维增强水泥基材料的制备与性能   总被引:1,自引:0,他引:1  
为了获得高性能PVA纤维增强水泥基复合材料的制备方法,研究了砂的颗粒级配、水胶比和粉煤灰掺量对高延性纤维增强水泥基复合材料(Engineered Cementitious Composites,ECC)的弯曲性能、抗压、抗折强度及开裂模式的影响。结果表明:随着砂的细度模数降低,ECC的跨中挠度增大,早期强度提高,但后期强度变化不明显。随着水胶比的增大,ECC的初始开裂荷载降低,跨中挠度增大,平均裂缝宽度增加。0.25水胶比的ECC的抗压强度可以满足高强度等级的要求。0.35水胶比的抗压强度可以满足对普通强度等级的要求。随着粉煤灰掺量的增加,ECC的初始开裂荷载降低、抗折和抗压强度逐渐降低,ECC的跨中挠度提高,平均裂缝宽度变小。在水胶比一定的条件下,采用细砂,适当增加粉煤灰掺量有助于提高ECC的韧性和延性。  相似文献   

13.
聚乙烯醇(PVA)纤维增强水泥基材料的弯曲性能与纤维在水泥基体内的分布和取向分布相关。采用抛光断面后涂荧光粉的显微成像法,基于图像处理程序对PVA纤维在水泥基材料中的分布和取向分布进行量化测定,对不同基体结构特征影响纤维分布的机理进行了讨论。结合弯曲试验结果,研究了纤维分布和取向分布对材料弯曲性能的影响。纤维分布测定结果表明,均匀的基体结构特征利于纤维的分布,同时对于材料组分和加工制作过程完全相同的试件,纤维分布系数越大,试件的弯曲强度与韧性越大;纤维取向分布测定结果表明,乱向分布的纤维当其长度方向与抛光断面方向的角度接近90°分布概率越大,试件的弯曲韧性也越大。  相似文献   

14.
通过掺加钢渣粉来制备聚乙烯醇(PVA)纤维增强钢渣粉-水泥基复合材料,从宏微观两个方面研究了这种复合材料的性能。考虑了基体材料的水胶比(0.25和0.35)、不同钢渣粉质量分数(0、30wt%、60wt%、80wt%),采用抗压强度试验、薄板四点弯曲试验研究了PVA纤维增强钢渣粉-水泥基复合材料的基本力学性能变化规律及其在弯曲荷载作用下的裂缝控制能力,采用扫描电镜观测了破坏后试样的微观结构。结果表明,水胶比和钢渣粉掺量均可明显影响PVA纤维增强钢渣粉-水泥基复合材料的基本力学性能,在低水胶比条件下(水胶比为0.25),钢渣粉掺量达到80wt%时,试样表现出较高的韧性指数和良好的裂缝控制能力,基本满足工程所需强度要求,水胶比为0.35时钢渣掺量不宜超过60wt%;同时,从节能减排的角度考虑,利用钢渣粉制备PVA纤维增强钢渣粉-水泥基复合材料是可行的。   相似文献   

15.
Engineered cementitious composite (ECC) is a strain hardening cementitious composite with extreme tensile ductility of several percent. Few emerging applications of ECC, including lightweight building façade and pavement, make self-cleaning a desirable functionality to be added into the material. This study aims to impart photocatalytic properties into ECC for engaging self-cleaning. Influence of TiO2 content on mechanical properties, cleaning efficiency, surface wettability, and dirt pick-up resistance of white ECC was studied. It shows that the inclusion of TiO2 in ECC engages photocatalysis, facilitates the decomposition of RhB, and enhances photo-induced hydrophilicity significantly. As a result, TiO2-ECC possesses self-cleaning with higher dirt pick-up resistance than normal ECC. However, TiO2 photocatalysis may adversely affect the flexural strength and ductility of ECC due to weakened fiber/matrix interface bond after UV/sunlight irradiation.  相似文献   

16.
This paper addresses the uncertainties associated with using carbon nanotubes (CNTs) as reinforcement for cement. These uncertainties emerge mainly from the CNTs’ wide range of mechanical properties and their interfacial behavior with cement. This study sheds light on the basis of choosing the optimal combinations of CNTs mechanical and interfacial parameters to improve the structural strength and ductility of CNT-reinforced cementitious composites. The finite element method (FEM) is employed to study the individual and interactive effects of five parameters, including interfacial shear (bond) strength, allowable slip, CNT Young’s modulus, residual bond stress and aspect ratio. Numerical results show that the parameters, at certain ranges of values, interact substantially and greatly alter the mechanical properties of the composite. It is also found that the governing parameter is the CNT Young’s modulus, which determines whether the composite is ductility critical or strength critical. Furthermore, the level of residual bond stress substantially influences the effect of other parameters, especially in the case of composite ductility.  相似文献   

17.
Abstract

This paper addresses the uncertainties associated with using carbon nanotubes (CNTs) as reinforcement for cement. These uncertainties emerge mainly from the CNTs’ wide range of mechanical properties and their interfacial behavior with cement. This study sheds light on the basis of choosing the optimal combinations of CNTs mechanical and interfacial parameters to improve the structural strength and ductility of CNT-reinforced cementitious composites. The finite element method (FEM) is employed to study the individual and interactive effects of five parameters, including interfacial shear (bond) strength, allowable slip, CNT Young’s modulus, residual bond stress and aspect ratio. Numerical results show that the parameters, at certain ranges of values, interact substantially and greatly alter the mechanical properties of the composite. It is also found that the governing parameter is the CNT Young’s modulus, which determines whether the composite is ductility critical or strength critical. Furthermore, the level of residual bond stress substantially influences the effect of other parameters, especially in the case of composite ductility.  相似文献   

18.
An experimental study was carried out to find material parameters for making fiber reinforced cementitious composites (FRCC) more ductile. One of the dominant factors to control the ductility might be hidden in fracture property of matrix as well as the interface property between fiber and matrix. Therefore this study varied air content and water-binder ratio as the parameters to change the fracture property of matrix and experimentally examined their influence on the ductility of FRCC by three-point bend test with notched beams. As a result, it is concluded that fracture toughness of the matrix could be one of key parameters to control the ductility of FRCC. In case of a polyethylene fiber used in this study, the optimum value of the fracture toughness (critical strain energy release rate): GIC of the matrix was obtained to be 7.5-8.0 N/m.  相似文献   

19.
矿渣粉煤灰制备胶凝材料的实验研究   总被引:1,自引:0,他引:1  
阐述了一种利用矿渣和粉煤灰制备胶凝材料的方法(矿渣和粉煤灰的比表面积为500m2/kg).研究了二水石膏和激发荆的质量分数对该胶凝材料强度的影响,运用扫描电镜分析了该胶凝材料的微观结构和形貌特征.结果表明,当矿渣、粉煤灰、二水石膏和激发剂的质量比为80∶5∶10∶5时可制备出满足现行国家标准的胶凝材料,这对矿渣和粉煤灰的综合利用具有一定的参考价值.  相似文献   

20.
In this study, the influences of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical properties of Engineered Cementitious Composites (ECC) made with High Tenacity Polypropylene (HTPP) fibers are investigated. While the HTPP-ECC examined in this study possesses moderate compressive strengths (30–70 MPa), their tensile ductility (1.91–3.91%) is similar to that of ECC with Polyvinyl Alcohol (PVA) fibers. For the purpose of controlling matrix flowability, different dosages of HRWR admixture were introduced to a matrix with fly ash/cement weight ratio of 2.8 and water/cementitious material weight ratio of 0.23. Dogbone-shaped and 50 mm cube specimens were used to investigate uniaxial tensile and compressive properties of HTPP-ECC, respectively. Test results showed that control of flowability in a certain range is required to achieve robust tensile ductility. A further improvement in tensile ductility and mechanical properties of HTPP-ECC was achieved through water-curing instead of air curing typically used for PVA-ECC. The basic mechanisms that enhance tensile ductility of HTPP-ECC through flowability control, mixing procedure modification, and water-curing are discussed from the view point of micromechanics underlying ECC design, with supporting evidence from fiber bridging stress–crack width (σδ) relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号