首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
采用Gleeble 3800热力模拟实验机。研究了一种Ti微合金钢在850~1150℃、0.1和1.0s^-1。条件下的变形奥氏体的动态再结晶行为及再结晶后奥氏体晶粒尺寸的演化规律。结果表明:形变激活能与变形条件相关,随着应变速率的增加而增加;Avrami指数m同样与变形条件有关;对实验数据进行回归分析后建立的Ti微合金钢动态再结晶的特征应变、特征应力、动力学以及稳定状态晶粒尺寸的数学模型精度较高。  相似文献   

2.
利用热模拟、组织分析等手段研究了初始奥氏体晶粒尺寸对热轧低碳微合金钢动态再结晶临界应变的影响.在建立热变形Arrhenius本构模型的基础上,引入了Zenner-Hollomon因子描述变形温度和应变速率对热变形的影响,最终建立了初始奥氏体晶粒尺寸与Z参数和临界应变的函数关系模型.结果 表明:奥氏体晶粒尺寸越小,动态再结晶临界应变也越小,越有利于动态再结晶的发生.利用所建立的函数关系模型计算出的临界应变值与试验值接近,该模型能较准确的预测热轧低碳微合金钢的临界应变值.  相似文献   

3.
为研究微合金元素Nb对高碳合金钢动态再结晶行为的影响,利用Gleeble-3500热模拟试验机进行单道次压缩试验,测定了高碳合金钢在变形温度为950~1150 ℃、应变速率为0.01~5 s-1的流变应力曲线,利用Zeiss光学显微镜观察了奥氏体动态再结晶晶粒形态,通过回归计算获得了相应的再结晶激活能,建立了热变形方程。结果表明:较高的变形温度和较低的应变速率有利于含铌高碳合金钢发生动态再结晶;含铌高碳合金钢的动态再结晶晶粒尺寸随着变形温度的升高而增大,当变形温度为1050 ℃时,含铌高碳合金钢已大量出现动态再结晶晶粒;0.040%铌加入到高碳合金钢中,在应变速率为0.1 s-1,变形温度为1150 ℃时推迟了钢的动态再结晶开始时间约2.23 s,动态再结晶形变激活能增加了52.26 kJ/mol。  相似文献   

4.
采用Gleeble-3500热模拟试验机研究了不同变形温度对Ti微合金钢再结晶行为的影响.基于流动应力、应力硬化曲线、应力松弛曲线对Ti微合金钢动态再结晶和静态再结晶行为进行了分析.结果 表明,微合金元素Ti能够显著抑制动态再结晶的发生;在应变速率0.75 s-1和真应变0.75时,随着变形温度的升高,变形后静态再结晶...  相似文献   

5.
采用Gleeble-3500热模拟试验机对65Mn钢进行热压缩试验,变形温度850~1150℃、应变速率0.02~20 s~(-1),最大真应变1.0,研究材料在上述试验条件下的动态再结晶行为,以及变形条件对再结晶晶粒尺寸的影响。结果表明:试验钢的真应力-真应变曲线在高温、低应变速率条件下出现明显峰值,随着温度的升高和应变速率的降低,临界应变变小,有利于动态再结晶发生;奥氏体再结晶晶粒尺寸与变形参数相关,应变速率降低,再结晶晶粒尺寸增大;变形温度降低,有利于再结晶晶粒尺寸细化。  相似文献   

6.
通过一种铌微合金钢高温下(900~1100℃)不同应变速率(0.01~10s<'-1>)的热模拟单道次压缩试验,结合组织观察,研究了热变形参数对动态再结晶过程的影响,求出动态再结晶形变激活能及相关参数,建立了该钢的热变形本构方程.实验结果表明,合金元素的添加,由于固溶原子拖曳及析出物的钉扎作用,增加了动态再结晶激活能,显著抑制了该钢的动态再结晶及晶粒长大过程.原始奥氏体晶粒尺寸增大、变形温度降低及应变速率增大将抑制动态再结晶过程.  相似文献   

7.
通过热模拟压缩试验研究了50SiMnVB合金钢在应变速率为0.01~10 s-1、温度为800~1000℃条件下的高温热变形行为。利用金相显微镜观察了合金压缩变形后的显微组织,结果表明:50SiMnVB合金钢在高温热变形过程中发生了典型的动态回复和动态再结晶行为,其中,动态再结晶以连续再结晶的形式进行,且应变速率越小、温度越高,越容易发生动态再结晶。根据试验结果,基于应变硬化率θ与流动应力σ之间的关系,确定了50SiMnVB合金钢高温热变形动态再结晶的临界应变;采用线性回归拟合建立了包括临界应变方程、峰值应变方程以及体积分数方程的50SiMnVB合金钢的高温变形动态再结晶模型,经对比分析发现,该模型能较好地预测合金钢高温热变形动态再结晶的体积分数;建立了50SiMnVB合金钢高温热变形动态再结晶晶粒尺寸模型。  相似文献   

8.
通过热模拟和微观组织的观察,对含Ti高强结构钢HG785在轧制过程中动态再结晶行为进行了研究;并探讨了变形条件对HG785钢奥氏体动态再结晶的影响。结果表明:试样的应变速率越小,越有利于动态再结晶进行,且随应变速率增大,动态再结晶晶粒变小;材料的变形温度越高,越有利于动态再结晶进行,但随着变形温度的提高,奥氏体动态再结晶晶粒会粗化。  相似文献   

9.
采用Gleeble-3500热模拟试验机进行高温等温压缩试验,研究了热变形参数对GH690合金晶粒细化的影响.结果表明:当变形程度较小时,随着真应变的增加,GH690合金动态再结晶的晶粒尺寸逐渐减小,但当真应变达到0.5后,随着真应变继续增加,动态再结晶晶粒尺寸变化不大;动态再结晶晶粒尺寸随变形温度的升高而增大,随应变速率的增大而减小.建立起热变形条件即Z参数与动态再结晶晶粒尺寸的关系.  相似文献   

10.
利用热力模拟实验技术、OM及SEM等,研究了一种钛微合金高强钢在温度为850~1150℃及应变速率为0.1~10 s-1条件下的奥氏体动态再结晶行为。采用最小二乘法回归确定了该微合金钢的热变形激活能和表观应力指数,建立了该微合金钢的热加工方程,并获得了热变形过程中峰值应变、临界应变与Z参数之间的关系。结果表明,峰值应变、临界应变与lnZ之间呈线性关系;在较高温度和较低应变速率条件下该微合金钢易于发生动态再结晶。  相似文献   

11.
研究了316LN奥氏体不锈钢在1050~1200 ℃、应变速率0.1,1和50 s-1下的压缩变形行为,分析了变形温度和应变速率对热流曲线的影响。基于位错密度理论,建立了316LN钢的热变形本构模型,并揭示了316LN钢的软化机理。结果表明,在高温低应变速率(小于0.1 s-1)条件下,动态再结晶(DRX)为主导软化机理;在高温高应变速率(大于1 s-1)条件下,动态回复(DRV)为主导软化机理;在高温及应变速率为0.1和1 s-1条件下,DRV和DRX共同作用。构建的模型可以很好地预测316LN钢的热变形行为,其Pearson相关系数为0.9956,平均相对误差绝对值为3.07%,为一个精确的本构模型。  相似文献   

12.
The hot deformation and dynamic recrystallization(DRX) behavior of austenite-based Fe–27Mn–11.5Al–0.95 C steel with a density of 6.55 g cm-3were investigated by compressive deformation at the temperature range of900–1150 °C and strain rate of 0.01–10 s-1. Typical DRX behavior was observed under chosen deformation conditions and yield-point-elongation-like effect caused by DRX of d-ferrite. The flow stress characteristics were determined by DRX of the d-ferrite at early stage and the austenite at later stage, respectively. On the basis of hyperbolic sine function and linear fitting, the calculated thermal activation energy for the experimental steel was 294.204 k J mol-1. The occurrence of DRX for both the austenite and the d-ferrite was estimated and plotted by related Zener–Hollomon equations. A DRX kinetic model of the steel was established by flow stress and peak strain without considering dynamic recovery and d-ferrite DRX. The effects of deformation temperature and strain rate on DRX volume fraction were discussed in detail. Increasing deformation temperature or strain rate contributes to DRX of both the austenite and the d-ferrite, whereas a lower strain rate leads to the austenite grains growth and the d-ferrite evolution, from banded to island-like structure.  相似文献   

13.
Single-pass compression tests were performed to investigate the hot deformation behavior of low-carbon boron microalloyed steel containing three various vanadium contents at 900-1100℃ and strain rate of 0.01-10 s~(-1) using the MMS-300 thermal mechanical simulator.The flow stress curves of investigated steels were obtained under the different deformation conditions,and the effects of the deformation temperature and strain rate on the flow stress were discussed.The characteristic points of flow stress were obtained from the stress dependence of strain hardening rate;the activation energy of investigated steels was determined by the regression analysis;the flow stress constitutive equations were developed;the effect of vanadium content on the flow stress and dynamic recrystallization(DRX) was investigated.The result showed that the flow stress and activation energy(3-6.5 kJ mol~(-1)) of the steel containing 0.18 wt% V were significantly higher than those of the steels with0.042 wt% and 0.086 wt% V,which was related to the increase in solute drag and precipitation effects for higher vanadium content.DRX analysis showed that the addition of vanadium can delay the initiation and the rate of DRX.  相似文献   

14.
文章利用Gleeble-1500热模拟试验机研究了SUPER82B硬线钢在温度为900℃~1050℃、变形速率为0.10s-1~10s-1条件下的热变形行为。通过奥氏体再结晶动力学回归计算了SUPER82B硬线钢的动态再结晶激活能、峰值应力σm与变形温度、应变速率之间的关系,动态再结晶临界应变εc和动态再结晶完成应变εs与ln(Z)的计算模型,给出了反映该钢动态再结晶进行过程的动态再结晶状态图等,为合理预报和控制SUPER82B硬线钢的组织和性能提供基本依据。  相似文献   

15.
为了准确预测AerMet100超高强钢在热加工过程中的微观组织演变,通过系列等温热压缩试验分析了合金在温度为800~1040℃、应变速率为0.01~10s-1、变形量为15~60%的热变形行为,并建立了动态再结晶(DRX)体积分数和晶粒尺寸的DRX模型。通过计算获得了AerMet100钢本构模型中的Zener-Hollomon参数,用于建立DRX模型。通过建立的DRX模型定量预测了热变形参数对合金微观组织演变的影响,结合微观组织观察发现,高温低应变速率和较大的变形程度有利于DRX充分发生,使组织细化和均匀化。模型预测结果与实验结果吻合较好,验证了所建立的DRX模型的准确性。结果表明,建立的DRX模型可以定量预测AerMet100钢在不同变形参数下进行热加工时的微观组织演变规律。  相似文献   

16.
To better understand the dynamic recrystallization (DRX) behavior of 35CrMo steel during hot deformation, a series of isothermal compression tests were carried out at different temperatures and strain rates. Using a constitutive equation built from the data obtained and the Arrhenius equation, the activation energy for hot deformation was determined through regression to be 342.69 kJ/mol. A model of the DRX kinetics was also constructed to characterize the influence of accumulated strain, temperature and strain rate on DRX evolution, which revealed that lower temperatures and higher strain rates require greater strain to achieve the same DRX volume fraction. Optical examination of the microstructure after deformation confirmed that this model accurately reflects reality and that grain size varies directly with deformation temperature, but inversely with strain rate.  相似文献   

17.
The dynamic recrystallization (DRX) behavior of LZ50 steel was investigated using hot compression tests at a deformation temperature of 870-1170 °C and a strain rate of 0.05-3 s?1. The effects of deformation temperature, strain, strain rate, and initial austenite grain size on the microstructural evolution during DRX were studied in detail. The austenite grain size of DRX was refined with increasing strain rate and decreasing temperature, whereas the initial grain size had no influence on DRX grain size. A model based on the Avrami equation was proposed to estimate the kinetics of the DRX under different deformation conditions. A DRX map, which was derived from the DRX kinetics, the recrystallized microstructure, and the flow stress analysis, can be used to identify optimal deformation conditions. The initiation of DRX was lower than Z c (critical Zener-Hollomon parameter) and higher than εc (critical strain). The relationship between the DRX microstructure and the Z parameter was analyzed. Fine DRX grain sizes can be achieved with a moderate Z value, which can be used to identify suitable deformation parameters.  相似文献   

18.
Hot compression tests were carried out with specimens of 20 Cr–24 Ni–6 Mo super-austenitic stainless steel at strain rate from 0.01 to 10 s~(-1) in the temperature range from 950 to 1150 °C, and flow behavior was analyzed. Microstructure analysis indicated that dynamic recrystallization(DRX) behavior was more sensitive to the temperature than strain rate, and full DRX was obtained when the specimen deformed at 1150 °C. When the temperature reduced to 1050 °C, full DRX was completed at the highest strain rate 10 s~(-1) rather than at the lowest strain rate 0.01 s~(-1) because the adiabatic heating was pronounced at higher strain rate. In addition, flow behavior reflected in flow curves was inconsistent with the actual microstructural evolution during hot deformation, especially at higher strain rates and lower temperatures. Therefore, flow curves were revised in consideration of the effects of adiabatic heating and friction during hot deformation. The results showed that adiabatic heating became greater with the increase of strain level, strain rate and the decrease of temperature, while the frictional effect cannot be neglected at high strain level. Moreover, based on the revised flow curves, strain-dependent constitutive modeling was developed and verified by comparing the predicted data with the experimental data and the modified data. The result suggested that the developed constitutive modeling can more adequately predict the flow behavior reflected by corrected flow curves than that reflected by experimental flow curves, even though some difference existed at 950 °C and0.01 s~(-1). The main reason was that plenty of precipitates generated at this deformation condition and affected the DRX behavior and deformation behavior, eventually resulted in dramatic increase of deformation resistance.  相似文献   

19.
35CrMo钢动态再结晶过程数值模拟与试验研究   总被引:8,自引:0,他引:8  
张斌  李波  张鸿冰 《锻压技术》2004,29(6):36-39,73
以热物理模拟试验研究为基础,得出35CrMo钢发生动态再结晶时的数学模型。采用热一力耦合的弹塑性有限元法对35CrMo结构钢在热变形过程进行了数值模拟。变形的不均匀性导致动态再结晶进行的不等时性,动态再结晶的发生初始于大变形区,随着应变的增加,逐渐向粘着区和自由变形区延伸。同时预测热变形过程的形变量、形变速率和形变温度对再结晶微观组织演变的影响。在一定温度下,再结晶晶粒尺寸的大小与应变速率呈反方向变化,随着变形的进行,试样内的晶粒尺寸趋于细化和均匀化。在一定应变速率下,随着形变温度的降低,再结晶晶粒尺寸趋于细化,导致了锻件的综合性能提高。为了观察显微组织演化过程,对模拟结果进行了金相法验证,模拟结果与实验结果比较吻合,模拟的结果是合理的。  相似文献   

20.
The thermal deformation difference of two phases for duplex stainless steel (DSS) makes hot working difficult, 2101 DSS substitute Mn, N for Ni to stabilize austenite phase, which will significantly affect hot deformation behavior. Hot compression tests in the temperature ranging from 1123 to 1423 K and strain rate ranging from 0.001 to 10 s(-1) were carried out on a Geeble-3800 thermal simulator for 2101 DSS. At the same strain rate, the flow curve characteristics of 2101 DSS changed from dynamic re-crystallzation (DRX) to dynamic recovery with increasing deformation temperature. Increasing defomation stain rate from 0.001 s(-1) to 0,01 and 0.1 s(-1) increased DRX temperature range, but higher strain rate of 1 and 10 s(-1) is not beneficial to DRX occurrence. In the deformation temperature region of 1253 similar to 1323 K and low strain rate of 0.01 similar to 0.1 s(-1), the smaller strain value corresponding to the peak stress, the austenite DRX is more likely to occur, which is beneficial to the equiaxed recrystallized grains formation. At low strain rate, the recrystallization grain grows up with the increase of deformation temperature, the worse effect of austenite DRX is related to weakened austenite stabilized ability of Mn substitution for Ni at high Zener-Hollomon parameter values. Based on the thermal deformation equation, the apparent activation energy Q was calculated as 464.49 kJ/mol, which is slightly higher than that of 2205 DSS, and the constitutive equation of the peak flow stress was established. By combining with flow curve and microstructure analysis, the processing map exhibits the optimum processing conditions are in deformation temperature ranging from 1220 to 1350 K and strain rate ranging from 0.001 to 0.1 s(-1) with high power dissipation co-efficient of 0.40 similar to 0.47, under which the austenite DRX obviously occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号