首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic layer deposition (ALD) of thin Al2O3 (≤10 nm) films is used to improve the rear surface passivation of large‐area screen‐printed p‐type Si passivated emitter and rear cells (PERC). A blister‐free stack of Al2O3/SiOx/SiNx is developed, leading to an improved back reflection and a rear recombination current (J0,rear) of 92 ± 6 fA/cm2. The Al2O3/SiOx/SiNx stack is blister‐free if a 700°C anneal in N2 is performed after the Al2O3 deposition and prior to the SiOx/SiNx capping. A clear relationship between blistering density and lower open‐circuit voltage (VOC) due to increased rear contacting area is shown. In case of the blister‐free Al2O3/SiOx/SiNx rear surface passivation stack, an average cell efficiency of 19.0% is reached and independently confirmed by FhG‐ISE CalLab. Compared with SiOx/SiNx‐passivated PERC, there is an obvious gain in VOC and short‐circuit current (JSC) of 5 mV and 0.2 mA/cm2, respectively, thanks to improved rear surface passivation and rear internal reflection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Spectral response of solar cells determines the output performance of the devices. In this work, a 20.0% efficient silicon (Si) nano/microstructures (N/M‐Strus) based solar cell with a standard solar wafer size of 156 × 156 mm2 (pseudo‐square) has been successfully fabricated, by employing the simultaneous stack SiO2/SiNx passivation for the front N/M‐Strus based n+‐emitter and the rear surface. The key to success lies in the excellent broadband spectral responses combining the improved short‐wavelength response of the stack SiO2/SiNx passivated Si N/M‐Strus based n+‐emitter with the extraordinary long‐wavelength response of the stack SiO2/SiNx passivated rear reflector. Benefiting from the broadband spectral response, the highest open‐circuit voltage (Voc) and short‐circuit current density (Jsc) reach up to 0.653 V and 39.0 mA cm?2, respectively. This high‐performance screen‐printed Si N/M‐Strus based solar cell has shown a very promising way to the commercial mass production of the Si based high‐efficient solar cells.  相似文献   

3.
Extremely low upper‐limit effective surface recombination velocities (Seff.max) of 5.6 and 7.4 cm/s, respectively, are obtained on ~1.5 Ω cm n‐type and p‐type silicon wafers, using silicon nitride (SiNx) films dynamically deposited in an industrial inline plasma‐enhanced chemical vapour deposition (PECVD) reactor. SiNx films with optimised antireflective properties in air provide an excellent Seff.max of 9.5 cm/s after high‐temperature (>800 °C) industrial firing. Such low Seff.max values were previously only attainable for SiNx films deposited statically in laboratory reactors or after optimised annealing; however, in our case, the SiNx films were dynamically deposited onto large‐area c‐Si wafers using a fully industrial reactor and provide excellent surface passivation results both in the as‐deposited condition and after industrial‐firing, which is a widely used process in the photovoltaic industry. Contactless corona‐voltage measurements reveal that these SiNx films contain a relatively high positive charge of (4–8) × 1012 cm−2 combined with a relatively low interface defect density of ~5 × 1011 eV−1 cm−2. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Silicon solar cells with passivated rear side and laser‐fired contacts were produced on float zone material. The front side contacts are built up in two steps, seed and plate. The seed layer is printed using an aerosol jet printer and a silver ink. After firing this seed layer through the silicon nitride layer, the conductive layer is grown by light induced plating. The contact formation is studied on different emitter sheet resistances, 55 Ω/sq, 70 Ω/sq, and on 110 Ω/sq. These emitters are passivated with a PECVD silicon nitride layer which also acts as an anti‐reflection coating. Even on the 110 Ω/sq emitters it was possible to reach a fill factor of 80·1%. The electrical properties i.e., the contact resistance of the front side contacts are studied by transfer length model (TLM) measurements. On a cell area of 4 cm2 and emitter sheet resistance of 110 Ω/sq, a record efficiency of 20·3% was achieved. Excellent open‐circuit voltage (Voc) and short‐circuit current (jsc) values of 661 mV and 38·4 mA/cm2 were obtained due to the low recombination in the 110 Ω/sq emitter and at the passivated rear surface. These results show impressively that it is possible to contact emitter profiles with a very high efficiency potential using optimized printing technologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
We apply ultra‐short pulse laser ablation to create local contact openings in thermally grown passivating SiO2 layers. This technique can be used for locally contacting oxide passivated Si solar cells. We use an industrially feasible laser with a pulse duration of τpulse ∼ 10 ps. The specific contact resistance that we reach with evaporated aluminium on a 100 Ω/sq and P‐diffused emitter is in the range of 0·3–1 mΩ cm2. Ultra‐short pulse laser ablation is sufficiently damage free to abandon wet chemical etching after ablation. We measure an emitter saturation current density of J0e = (6·2 ± 1·6) × 10−13 A/cm2 on the laser‐treated areas after a selective emitter diffusion with Rsheet ∼ 20 Ω/sq into the ablated area; a value that is as low as that of reference samples that have the SiO2 layer removed by HF‐etching. Thus, laser ablation of dielectrics with pulse durations of about 10 ps is well suited to fabricate high‐efficiency Si solar cells. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper reports on the implementation of carrier‐selective tunnel oxide passivated rear contact for high‐efficiency screen‐printed large area n‐type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open‐circuit voltage iVoc of 714 mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back‐end high temperature process. In combination with an ion‐implanted Al2O3‐passivated boron emitter and screen‐printed front metal grids, this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n‐type Czochralski wafers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The use of ion implantation doping instead of the standard gaseous diffusion is a promising way to simplify the fabrication process of silicon solar cells. However, difficulties to form high‐quality boron (B) implanted emitters are encountered when implantation doses suitable for the emitter formation are used. This is due to a more or less complete activation of Boron after thermal annealing. To have a better insight into the actual state of the B distributions, we analyze three different B emitters prepared on textured Si wafers: (1) a BCl3 diffused emitter and two B implanted emitters (fixed dose) annealed at (2) 950°C and at (3) 1050°C (less than an hour). Our investigations are in particular based on atom probe tomography, a technique able to explore 3D atomic distribution inside a material at nanometer scale. Atom probe tomography is employed here to characterize B atomic distribution inside textured Si solar cell emitters and to quantify clustering of B atoms. Here, we show that implanted emitters annealed at 950 °C present maximum clusters due to poor solubility at lower temperature and also highest emitter saturation current density (J0e = 1000 fA/cm2). Increasing the annealing temperature results in greatly improved J0e (131 fA/cm2) due to higher solubility and a consequently lower number of clusters. BCl3 diffused emitters do not contain any B clusters and presented the best emitter quality. From our results, we conclude that clustering of B atoms is the main reason behind higher J0e in the implanted boron emitters and hence degraded emitter quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
High‐efficiency 4 cm2 screen‐printed (SP) textured cells were fabricated on 100 Ω/sq emitters using a rapid single‐step belt furnace firing process. The high contact quality resulted in a low series resistance of 0·79 Ωcm2, high shunt resistance of 48 836 Ωcm2, a low junction leakage current of 18·5 nA/cm2 (n2 = 2) yielding a high fill factor (FF) of 0·784 on 100 Ω/sq emitter. A low resistivity (0·6 Ωcm) FZ Si was used for the base to enhance the contribution of the high sheet‐resistance emitter without appreciably sacrificing the bulk lifetime. This resulted in a 19% efficient (confirmed at NREL) SP 4 cm2 cell on textured FZ silicon with SP contacts and single‐layer antireflection coating. This is apparently higher in performance than any other previously reported cell using standard screen‐printing approaches (i.e., single‐step firing and grid metallization). Detailed cell characterization and device modeling were performed to extract all the important device parameters of this 19% SP Si cell and provide guidelines for achieving 20% SP Si cells. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we report on ion‐implanted, high‐efficiency n‐type silicon solar cells fabricated on large area pseudosquare Czochralski wafers. The sputtering of aluminum (Al) via physical vapor deposition (PVD) in combination with a laser‐patterned dielectric stack was used on the rear side to produce front junction cells with an implanted boron emitter and a phosphorus back surface field. Front and back surface passivation was achieved by thin thermally grown oxide during the implant anneal. Both front and back oxides were capped with SiNx, followed by screen‐printed metal grid formation on the front side. An ultraviolet laser was used to selectively ablate the SiO2/SiNx passivation stack on the back to form the pattern for metal–Si contact. The laser pulse energy had to be optimized to fully open the SiO2/SiNx passivation layers, without inducing appreciable damage or defects on the surface of the n+ back surface field layer. It was also found that a low temperature annealing for less than 3 min after PVD Al provided an excellent charge collecting contact on the back. In order to obtain high fill factor of ~80%, an in situ plasma etching in an inert ambient prior to PVD was found to be essential for etching the native oxide formed in the rear vias during the front contact firing. Finally, through optimization of the size and pitch of the rear point contacts, an efficiency of 20.7% was achieved for the large area n‐type passivated emitter, rear totally diffused cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Expanding thermal plasma (ETP) deposited silicon nitride (SiN) with optical properties suited for the use as antireflection coating (ARC) on silicon solar cells has been used as passivation layer on textured monocrystalline silicon wafers. The surface passivation behavior of these high‐rate (>5 nm/s) deposited SiN films has been investigated for single layer passivation schemes and for thermal SiO2/SiN stack systems before and after a thermal treatment that is normally used for contact‐firing. It is shown that as‐deposited ETP SiN used as a single passivation layer almost matches the performance of a thermal oxide. Furthermore, the SiN passivation behavior improves after a contact‐firing step, while the thermal oxide passivation degrades which makes ETP SiN a better alternative for single passivation layer schemes in combination with a contact‐firing step. Moreover, using the ETP SiN as a part of a thermal SiO2/SiN stack proves to be the best alternative by realizing very low dark saturation current densities of <20 fA/cm2 on textured solar‐grade FZ silicon wafers and this is further improved to <10 fA/cm2 after the anneal step. Optical and electrical film characterizations have also been carried out on these SiN layers in order to study the behavior of the SiN before and after the thermal treatment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Hot‐wire chemical vapor deposition (HWCVD) is a promising technique for very fast deposition of high quality thin films. We developed processing conditions for device‐ quality silicon nitride (a‐SiNx:H) anti‐reflection coating (ARC) at high deposition rates of 3 nm/s. The HWCVD SiNx layers were deposited on multicrystalline silicon (mc‐Si) solar cells provided by IMEC and ECN Solar Energy. Reference cells were provided with optimized parallel plate PECVD SiNx and microwave PECVD SiNx respectively. The application of HWCVD SiNx on IMEC mc‐Si solar cells led to effective passivation, evidenced by a Voc of 606 mV and consistent IQE curves. For further optimization, series were made with HW SiNx (with different x) on mc‐Si solar cells from ECN Solar Energy. The best cell efficiencies were obtained for samples with a N/Si ratio of 1·2 and a high mass density of >2·9 g/cm3. The best solar cells reached an efficiency of 15·7%, which is similar to the best reference cell, made from neighboring wafers, with microwave PECVD SiNx. The IQE measurements and high Voc values for these cells with HW SiNx demonstrate good bulk passivation. PC1D simulations confirm the excellent bulk‐ and surface‐passivation for HW SiNx coatings. Interesting is the significantly higher blue response for the cells with HWCVD SiNx when compared to the PECVD SiNx reference cells. This difference in blue response is caused by lower light absorption of the HWCVD layers (compared to microwave CVD; ECN) and better surface passivation (compared to parallel plate PECVD; IMEC). The application of HW SiNx as a passivating antireflection layer on mc‐Si solar cells leads to efficiencies comparable to those with optimized PECVD SiNx coatings, although HWCVD is performed at a much higher deposition rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
We have presented thin Al2O3 (~4 nm) with SiNx:H capped (~75 nm) films to effectively passivate the boron‐doped p+ emitter surfaces of the n‐type bifacial c‐Si solar cells with BBr3 diffusion emitter and phosphorus ion‐implanted back surface field. The thin Al2O3 capped with SiNx:H structure not only possesses the excellent field effect and chemical passivation, but also establishes a simple cell structure fully compatible with the existing production lines and processes for the low‐cost n‐type bifacial c‐Si solar cell industrialization. We have successfully achieved the large area (238.95 cm2) high efficiency of 20.89% (front) and 18.45% (rear) n‐type bifacial c‐Si solar cells by optimizing the peak sintering temperature and fine finger double printing technology. We have further shown that the conversion efficiency of the n‐type bifacial c‐Si solar cells can be improved to be over 21.3% by taking a reasonable high emitter sheet resistance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Carrier selective passivated contacts composed of thin oxide, n + polycrystalline Si and metal on top of a n‐Si absorber can significantly lower the recombination current density (Jorear ≤8 fA/cm2) under the contact while providing excellent specific contact resistance (5–10 mΩ‐cm2); 25.1% efficient small area cells with photolithography front contacts on boron doped selective emitter and Fz wafers have been achieved by Fraunhofer ISE using their tunnel oxide passivated contact (TOPCon) approach. This paper shows a methodology to model such passivated contact cells using Sentaurus device model, which involves replacing the TOPCon region by carrier selective electron and hole recombination velocities to match the measured Jorear of the TOPCon region as well as all the light IV values of the cell. We first validated the methodology by modeling a 24.9% reference cell. The model was then extended to assess the efficiency potential of large area TOPCon cells on commercial grade n‐type Cz material with screen‐printed front contacts. To use realistic input parameters, a 21% n‐type PERT cell was fabricated on Cz wafer (5 Ω‐cm, 1.5‐ms lifetime). Modeling showed that the cell efficiency will improve to only 21.6% if the back of this cell is replaced by the above TOPCon, and the performance is limited by the homogenous emitter. Efficiency was then modeled to improve to 22.6% with the implementation of selective emitter (150/20 Ω/sq). Finally, it is shown that screen printing of 40‐µm‐wide lines and improved bulk material (10 Ω‐cm, 3‐ms lifetime) can raise the single side TOPCon Cz cell efficiency to 23.2%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Screen‐printed metal contact formation through a carbon containing antireflection coating was investigated for silicon solar cells by fabricating conventional carbon‐free SiNx and carbon‐rich SiCxNy film. An appreciable difference was found in the average shunt resistance (Rsh), which was about an order of magnitude higher for SiCxNy‐coated solar cells relative to the counterpart SiNx‐coated solar cells. Series resistance (Rs) and fill factor (FF) were comparable for both antireflection coatings but the starting efficiency of SiCxNy‐coated cell was ~0·2% lower because of slightly inferior surface passivation. However, SiCxNy‐coated solar cells showed less degradation under lower illumination (<1000 W/m2) compared with the SiNx‐coated cells due to reduced FF degradation under low illumination. Theoretical calculations in this paper support that this is a direct result of high Rsh. Detailed photovoltaic system and cost modeling is performed to quantify the enhanced energy production and the reduced levelized cost of electricity due to higher shunt resistance of the SiCxNy‐coated cells. It is shown that Rsh value below 30 Ω (7000 Ω cm2 for 239 cm2 cell) can lead to appreciable loss in energy production in regions of low solar insolation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A solar cell process designed to utilise low‐temperature plasma‐enhanced chemical vapour deposited (PECVD) silicon nitride (SiNx) films as front and rear surface passivation was applied to fabricate multicrystalline silicon (mc‐Si) solar cells. Despite the simple photolithography‐free processing sequence, an independently confirmed efficiency of 18.1% (cell area 2 × 2 cm2) was achieved. This excellent efficiency can be predominantly attributed to the superior quality of the rear surface passivation scheme consisting of an SiNx film in combination with a local aluminium back‐surface field (LBSF). Thus, it is demonstrated that low‐temperature PECVD SiNx films are well suited to achieve excellent rear surface passivation on mc‐Si. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
We have studied the surface passivation of silicon by deposition of silicon nitride (SiN) in an industrial‐type inline plasma‐enhanced chemical vapor deposition (PECVD) reactor designed for the continuous coating of silicon solar cells with high throughput. An optimization study for the passivation of low‐resistivity p‐type silicon has been performed exploring the dependence of the film quality on key deposition parameters of the system. With the optimized films, excellent passivation properties have been obtained, both on undiffused p‐type silicon and on phosphorus‐diffused n+ emitters. Using a simple design, solar cells with conversion efficiencies above 20% have been fabricated to prove the efficacy of the inline PECVD SiN. The passivation properties of the films are on a par with those of high‐quality films prepared in small‐area laboratory PECVD reactors. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A thin SiOyNx film was inserted below a conventional SiNx antireflection coating used in c‐Si solar cells in order to improve the surface passivation and the solar cell's resistance to potential‐induced degradation (PID). The effect of varying the flow ratio of the N2O and SiH4 precursors and the deposition temperature for the SiOyNx thin film upon material properties were systematically investigated. An excellent surface passivation was obtained on FZ p‐type polished silicon wafers, with the best results obtained with a SiOyNx film deposited at a very low temperature of 130 °C and with an optical refractive index of 1.8. In the SiOyNx/SiNx stack structure, a SiOyNx film with ~6 nm thickness is sufficient to provide excellent surface passivation with an effective surface recombination velocity Seff < 2 cm/s. Furthermore, we applied the optimized SiOyNx/SiNx stack on multicrystalline Si solar cells as a surface passivation and antireflection coating, resulting in a 0.5% absolute average conversion efficiency gain compared with that of reference cells with conventional SiNx coating. Moreover, the cells with the SiOyNx/SiNx stack layers show a significant increase in their resistance to PID. Nearly zero degradation in shunt resistance was obtained after 24 h in a PID test, while a single SiNx‐coated silicon solar cell showed almost 50% degradation after 24 h. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
High‐quality surface and bulk passivation of crystalline silicon solar cells has been obtained under optimum anti‐reflection coating properties by silicon nitride (a‐SiNx:H) deposited at very high deposition rates of ∼5 nm/s. These a‐SiNx:H films were deposited using the expanding thermal plasma (ETP) technology under regular processing conditions in an inline industrial‐type reactor with a nominal throughput of 960 solar cells/hour. The low surface recombination velocities (50–70 cm/s) were obtained on p‐type silicon substrates (8·4 Ω cm resistivity) for as‐deposited and annealed films within the broad refractive index range of 1·9–2·4, which covers the optimum bulk passivation and anti‐reflection coating performance reached at a refractive index of ∼2·1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Ion implantation has the advantage of being a unidirectional doping technique. Unlike gaseous diffusion, this characteristic highlights strong possibilities to simplify solar cell process flows. The use of ion implantation doping for n‐type PERT bifacial solar cells is a promising process, but mainly if it goes with a unique co‐annealing step to activate both dopants and to grow a SiO2 passivation layer. To develop this process and our SONIA cells, we studied the impact of the annealing temperature and that of the passivation layers on the electrical quality of the implanted B‐emitter and P‐BSF. A high annealing temperature (above 1000 °C) was necessary to fully activate the boron atoms and to anneal the implantation damages. Low J0BSF (BSF contribution to the saturation current density) of 180 fA/cm2 was reached at this high temperature with the best SiO2 passivation layer. An average efficiency of 19.7% was reached using this simplified process flow (“co‐anneal process”) on large area (239 cm2) Cz solar cells. The efficiency was limited by a low FF, probably due to contaminations by metallization pastes. Improved performances were achieved in the case of a “separated anneals” process where the P‐BSF is activated at a lower temperature range. An average efficiency of 20.2% was obtained in this case, with a 20.3% certified cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Many solar cells incorporating SiNx films as a rear surface passivation scheme have not reached the same high level of cell performance as solar cells incorporating high‐temperature‐grown silicon dioxide films as a rear surface passivation. In this paper, it is shown by direct comparison of solar cells incorporating the two rear surface passivation schemes, that the performance loss is mainly due to a lower short‐circuit current while the open‐circuit voltage is equally high. With a solar cell test structure that features a separation of the rear metal contacts from the passivating SiNx films, the loss in short‐circuit current can be reduced drastically. Besides a lower short‐ circuit current, dark I–V curves of SiNx rear surface passivated solar cells exhibit distinct shoulders. The results are explained by parasitic shunting of the induced floating junction (FJ) underneath the SiNx films with the rear metal contacts. The floating junction is caused by the high density of fixed positive charges in the SiNx films. Other two‐dimensional effects arising from the injection level dependent SRV of the Si/SiNx interfaces are discussed as well, but, are found to be of minor importance. Pinholes in the SiNx films and optical effects due to a different internal rear surface reflectance can be excluded as a major cause for the performance loss of the SiNx rear surface passivated cells. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号