首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
初沉污泥作为生物脱氮除磷快速碳源的转化因素研究   总被引:6,自引:0,他引:6  
对城市污水处理厂初沉污泥转化为生物脱氮除磷系统快速可利用碳源进行了试验研究.结果表明,控制初沉污泥含固率2.13%左右,温度33℃,HRT为3d,pH值5.5~6.5时,初沉污泥水解转化率为13.6%,VFA产率为0.102mgVFA(COD)/mg污泥COD;初沉污泥经粉碎预处理后,控制含固率2.20%左右,温度33℃,同样的pH值下,HRT为2d时,水解转化率可达20.59%,VFA产率为0.152mgVFA(COD)/mg污泥COD.可为脱氮除磷系统提供快速可利用的碳源.  相似文献   

2.
初沉污泥水解酸化对A~2/O工艺强化除磷影响   总被引:2,自引:1,他引:1  
挥发性脂肪酸(VFA)是生物除磷过程中的关键物质,增加进水中的VFA可以强化生物除磷效果.提高脂肪酸含量的一个有效方法是对初沉污泥进行水解和酸化,通过对比中试试验和实际污水厂的运行结果,详细讨论了初沉污泥水解对进入生化反应系统的进水水质及ρ(VFA)、ρ(C):ρ(P)的影响.结果表明,初沉污泥水解酸化可以改善进水水质,ρ(BOD5)、ρ(CODcr)、ρ(TP)、ρ(sP)、ρ(SS)相对污水厂初沉出水分别提高61.1%、36.5%、36.1%、17.36%和52.0%,可生物化性指标也相应地提高了20.40%.初沉出水VFA有显著提高,平均值由进水的12增加到56,提高了3.7倍,为后续强化生物脱氮除磷创造了理想的条件.通过初沉污泥水解实现的污泥水解技术,可用于现有污水处理厂为实现生物脱氮除磷目标而实施的升级改造,解决进水中碳源不足的难题.  相似文献   

3.
挥发性脂肪酸(VFA)是生物除磷过程中的关键物质,增加进水中的VFA可以强化生物除磷效果.提高脂肪酸含量的一个有效方法是对初沉污泥进行水解和酸化,通过对比中试试验和实际污水厂的运行结果,详细讨论了初沉污泥水解对进入生化反应系统的进水水质及ρ(VFA)、ρ(C):ρ(P)的影响.结果表明,初沉污泥水解酸化可以改善进水水质,ρ(BOD5)、ρ(CODcr)、ρ(TP)、ρ(SP)、ρ(SS)相对污水厂初沉出水分别提高61.1%、36.5%、36.1%、17.36%和52.0%,可生物化性指标也相应地提高了20.40%.初沉出水VFA有显著提高,平均值由进水的12增加到56,提高了3.7倍,为后续强化生物脱氮除磷创造了理想的条件.通过初沉污泥水解实现的污泥水解技术,可用于现有污水处理厂为实现生物脱氮除磷目标而实施的升级改造,解决进水中碳源不足的难题.  相似文献   

4.
为解决低碳氮比生活污水生物脱氮过程中碳源不足的问题,本试验利用絮凝污泥水解酸化液作为外加碳源,通过生物絮凝吸附-前置反硝化曝气生物滤池(BAF)组合工艺,研究水解酸化液对低碳氮比生活污水生物脱氮性能的影响。试验结果表明:未投加水解酸化液的条件下,出水COD、NH_+~4-N和TN平均值为17.57 mg/L、1.27 mg/L和10.21 mg/L,系统去除率分别达到77.91%、95.48%、64.52%左右;在碳源投配比1:60时,进入前置BAF系统的COD/TN为3.71,NH_+~4-N和TN的去除率分别达到96.12%和79.80%。研究表明,以絮凝污泥水解酸化液作为低碳氮比生活污水补充碳源,可显著提高前置BAF生物脱氮性能,且实现絮凝污泥的资源化与减量化。  相似文献   

5.
采用水解反硝化脱氮工艺,将水解酸化与反硝化脱氮过程相结合,取代缺氧反硝化,解决城镇污水冬季脱氮效果差的问题.在水解反硝化工艺的中试系统中,氨氮和总氮的去除效果受温度的影响较小,冬季和夏季氨氮去除率分别达到98.3%和98.4%,总氮去除率分别为65.2%和68.0%.以水解反硝化污泥与AAO工艺中的缺氧池污泥为研究对象,对比分析温度对两种污泥比反硝化速率和耗碳率的影响.结果显示:温度对水解池污泥的影响显著小于缺氧池污泥,在25、30℃两者反硝化速率相当,但是当温度为8、15和20℃下,水解池污泥的最大比反硝化脱氮速率分别为缺氧池污泥的1.7倍、1.3倍和1.4倍;同时,在各温度条件下,水解池污泥的耗碳率基本为缺氧池污泥的51.2%~81.7%.  相似文献   

6.
初沉污泥水解酸化试验研究   总被引:7,自引:2,他引:5  
城市污水中碳源不足是普遍存在的问题,采用城市污水处理厂自身产生的废物(初沉污泥)进行水解酸化以开发碳源.控制温度为35℃,水力停留时间为28 h,污泥停留时间为3 d,水解酸化系统出水的ρ(SCOD)和ρ(VFA)达到的最大值分别为975.8 mg/L和516.4 mg/L.表明通过控制水力停留时间和污泥停留时间可以实现水解酸化系统的启动,水解酸化系统碱度在725 mg/L左右,pH值在7.12左右时,系统能保持稳定的水解酸化效果.研究表明,水解酸化系统出现波动时,ρ(SCOD)和ρ(VFA)总是优先于系统的碱度和pH值而发生变化,同时系统的碱度也能有效缓冲系统pH值的变化.  相似文献   

7.
采用4组构造相同的完全混合流态水解酸化反应器,以同等浓度的生物絮凝吸附污泥作为底物污泥,初始pH值为10,分别在温度为15℃、25℃、35℃、45℃的反应条件下,研究温度对生物絮凝吸附污泥水解酸化产物及产率的影响。试验结果表明:温度的升高加速了生物絮凝吸附污泥水解酸化。45℃时,SCOD第5天即达到最大产量3976.3mg/L,同时VFAs也达到峰值1988.5mg/L。随着温度的升高,最大浓度VFAs组分中,乙酸和丙酸比重不断增加。45℃时,VFAs组分中乙酸、丙酸分别高达51.25%、26.32%。此外,4组反应温度下,生物絮凝吸附污泥产酸发酵获得碳源的同时均伴随着氮、磷元素的释放,且温度越高,释放越明显。整体而言,35℃反应条件下,生物絮凝吸附污泥水解酸化既可为脱氮系统提供较多的碳源,又能避免过高的溶出氮、磷负荷。  相似文献   

8.
停留时间对ABR污泥水解酸化系统影响研究   总被引:1,自引:0,他引:1  
以城市污水处理厂初沉污泥为研究对象,采用折流板反应器研究利用初沉污泥水解酸化产生碳源的可行性及其工艺特性.在温度为30℃,水力停留时间为24 h,污泥停留时间为3 d的条件下,经过30 d的试验运行,系统具备稳定产酸效果.酸化液的ρ(SCOD)和ρ(VFAs)极值分别达到1 182 mg/L和602.8 mg/L.试验表明,停留时间对系统酸化液碳源积累有重要影响,同等条件下增大水力停留时间可增加碳源的积累;而HRT大于32 h后,碳源数量增速减缓.固体停留时间在5 d时效果最佳,ρ(SCOD)、ρ(VFA)分别可达1 498 mg/L和895.3 mg/L;SRT增大到7 d时,产酸效果下降.  相似文献   

9.
F/O法处理含氮有机废水工艺研究   总被引:1,自引:0,他引:1  
采用F/O工艺对含己内酰胺废水的脱氮效果进行了研究。结果表明,此工艺的脱氮效果良好,剩余污泥产量氏。系统的水力停留时间18h,好氧池溶解氧1.0-2.0mg/L,填料CODcr负荷最高不超过1.29kg/m^3.d为宜,用剩余污泥作为内碳源效果不理想,有待进一步探讨,好氧池有机物的降解符合动力学方程。  相似文献   

10.
目的研究碳源种类对双泥生物膜亚硝化反硝化除磷工艺脱氮除磷的影响程度.方法以甲醇、淀粉、葡萄糖、乙酸钠、丙酸钠、污泥水解酸化液六种碳源模拟废水,通过间歇运行方式对不同碳源的反硝化除磷系统的运行状态进行研究.结果六个系统中,淀粉的COD去除率最小,为45%,其余系统相差不大,去除率最大的是污泥水解酸化液,为88%;缺氧结束时系统出水PO43--P质量浓度分别为2.24 mg/L、3.00 mg/L、3.81 mg/L、1.40 mg/L、2.46 mg/L、1.18 mg/L;各系统每克M LSS的亚反硝化速率分别为1.27 mg/(g·h)、1.15 mg/(g·h)、1.58 mg/(g·h)、2.91 mg/(g·h)、2.60 mg/(g·h)、2.03 mg/(g·h).结论碳源种类对双泥生物膜亚硝化反硝化除磷系统有很大影响,淀粉类大分子碳源不利于反硝化除磷,乙酸钠类小分子物质有利于磷的释放和吸收.  相似文献   

11.
不同外碳源对污泥反硝化特性的影响   总被引:7,自引:0,他引:7  
为了选择最优的反硝化外投碳源,应用SBR和A/O反应器,系统地研究了甲醇、乙醇和乙酸钠作为外碳源时污泥的反硝化特性.甲醇、乙醇和乙酸钠作为外碳源时污泥的比反硝化速率分别为3.2 mg/g·h~(-1)、9.6 mg/g·h~(-1)和12 mg/g·h~(-1).甲醇和乙醇作为外碳源时污泥产率大致相同(约为0.40 g/g),而乙酸钠作为外碳源其污泥产率最高(0.65 g/g),甲醇作为外碳源时系统启动时间和驯化期长,不能迅速地响应进水水质的变化.乙醇是反硝化处理系统的最优外加碳源,具有反硝化速率高、污泥产率低、响应迅速、来源广且对环境的影响小等优点.  相似文献   

12.
利用SBR反应器硝化结束的混合液,通过投加不同碳源量和利用内源碳源反硝化,考察了不同ρ(C)/ρ(N)对污水反硝化过程中N2O产生情况的影响.控制ρ(C)/ρ(N)分别为0、1.2、2.4、3.5、5.0和20,结果发现,不投加外碳源条件下,利用内源碳源反硝化过程反硝化率仅有10%,产生的ρ(N2O)也很低.投加外碳源控制ρ(C)/ρ(N)为1.2和2.4条件下,反硝化率分别为18.44%和33.55%,产生的ρ(N2O)同样较低,ρ(C)/ρ(N)=3.5和5.0时,反硝化率升高到了71%和91.4%,产生的ρ(N2O)也升高到0.227 mg/L和0.135 mg/L,是不加外碳源时产生量的30倍和18倍.继续提高ρ(C)/ρ(N)到20,发现反硝化率可以达到99.29%,产生的ρ(N2O)增高到了0.317 mg/L.可见,在污水反硝化过程中,虽然ρ(C)/ρ(N)过低产生的ρ(N2O)很少,但严重影响反硝化效果,要得到较高的反硝化率,需要较高的ρ(C)/ρ(N),但是ρ(C)/ρ(N)较低和过高时都会产生较高的ρ(N2O),所以,污水反硝化过程中应该控制ρ(C)/ρ(N)在5左右,既可以实现较高的反硝化氮去除率,又可减少ρ(N2O)的产生.  相似文献   

13.
污泥发酵液为碳源的反硝化过程亚硝酸盐积累   总被引:2,自引:0,他引:2  
以污泥发酵液为碳源,通过批次试验研究了不同溶解性有机物的质量浓度与硝酸盐氮质量浓度之比(ρ(SCOD)/ρ(NO-3-N))和分次投加碳源时反硝化过程亚硝酸盐的积累特性.试验结果表明:不同ρ(SCOD)/ρ(NO-3-N)条件下NO-2-N都得到积累;ρ(SCOD)/ρ(NO-3-N)<4时,NO-2-N的最大积累质量浓度和积累速率随着ρ(SCOD)/ρ(NO-3-N)的增加而增大,分别达12.83 mg/L和0.107 mg/(L·min).分次投加发酵液与1次投加发酵液相比,NO-2-N的最大积累质量浓度相差很小,但分次投加能保持稳定的NO-2-N积累.另外,以污泥发酵液为碳源的反硝化过程,反硝化过程NO-2-N的积累和发酵液的低pH导致N2O的释放与ρ(SCOD)/ρ(NO-3-N)成正相关.因此,在构建反硝化耦合厌氧氨氧化系统时,分次投加发酵液具有很大优势,不仅可产生稳定的NO-2-N积累,弱化有机物对厌氧氨氧化菌的抑制作用,还可减少N2O的释放.  相似文献   

14.
随着更加严格的氨氮污水排放标准的实施,中国大多数城镇污水处理厂出水中氨氮难以达标的问题日益突出,其中,碳源不足成为反硝化脱氮的主要制约因素。针对低碳氮比污水,需要额外投加碳源以强化反硝化脱氮。结合对反硝化外加碳源的研究成果,综述了以小分子有机物及糖类物质为主的传统碳源,以天然纤维素物质、人工合成高聚物、骨架型复合缓释碳源为主的新型固体碳源,和以工业废水、污泥及餐厨废弃物水解液等为主的新型液体碳源,分析了目前外加碳源研究和实际运用中存在的问题和挑战。结果表明,现阶段以传统碳源为基础研发的复合碳源更适合商业推广,而大多数新型碳源实际应用还存在各种问题,但其成本低、环保性高、应用广泛,值得深入研究。  相似文献   

15.
为研究Cu~(2+)在缺氧和好氧不同环境中对活性污泥沉降性及脱氮性能的影响,在3个完全相同以缺氧/好氧方式运行的序批式反应器(SBR)中,采用以乙酸钠为唯一碳源的合成废水,待系统的硝化反硝化过程运行稳定后,SBR 1#作为对照试验,每周期分别在SBR 2#的缺氧段和SBR 3#的好氧段投加Cu SO4溶液,每次按反应器内5mg/L Cu~(2+)投加.研究结果表明:在缺氧段投加Cu~(2+)能引发污泥膨胀,而在好氧段投加Cu~(2+)并未引起污泥沉降性的恶化;在缺好氧环境中Cu~(2+)都未引起丝状菌的大量增殖;Cu~(2+)能刺激微生物分泌更多的胞外聚合物抵御Cu~(2+)的毒害作用,抑制微生物贮存聚-β-羟基烷酸酯(PHA)的能力;在SBR 2#的缺氧段投加Cu~(2+)有利于短程硝化反硝化的形成,但长期投加并不能维持短程硝化,而在SBR 3#的好氧段投加Cu~(2+)后,系统迅速丧失脱氮性能.  相似文献   

16.
污泥厌氧发酵物强化低碳氮比生活污水脱氮除磷   总被引:1,自引:0,他引:1  
为降低使用污泥厌氧发酵物作碳源时的成本,以及简化使用步骤,研究将既不进行发酵液与污泥的分离,也不去除副产物氮和磷的污泥发酵物直接作生活污水脱氮除磷碳源的可行性.以实际低碳氮比城市生活污水为处理对象,将不同量的污泥碱性发酵物(0,20,50,100,200 mL,对应的SCOD质量依次为0,79,198,396,792 mg)作为生物反硝化脱氮和厌氧释磷的碳源,考察脱氮和释磷情况.结果表明:随着投加量的增加,反应结束时氮氧化合物(NO~-_x-N)先降低后升高,当投加量为50 mL(SCOD质量为198 mg、氮质量为12.9 mg、碳氮比为15.3)时,NO~-_x-N质量浓度最低,仅为1.2 mg/L且全部以NO~-_2-N的形式存在,对应的反硝化效率为94.9%;厌氧释磷过程随着污泥发酵物投加量的增多,释磷量不仅没有升高,反而会降低,当投加量为20 mL(SCOD质量为79 mg、氮质量为5.2 mg、磷质量为1.6 mg、碳氮比为15.3、碳磷比为49.5)时,反应结束时释磷量最多,高达23.8 mg/L.此外,通过模拟硝化过程、反硝化过程以及鉴定细胞形态,得出污泥发酵物中硝化细菌和反硝化细菌的细胞结构遭到破坏,其活性均被抑制,即发酵物的引入不影响污水脱氮除磷系统主要菌群结构的稳定性.因此,污泥厌氧发酵物直接做生活污水脱氮除磷的碳源是可行的,本研究中对于反硝化脱氮,50 mL为最佳投加量,对于厌氧释磷,20 mL为最佳投加量.  相似文献   

17.
采用序批试验研究了在T=(15±1)℃条件下以生活污水、污泥水解酸化上清液、乙酸钠、甲醇、乙醇和葡萄糖为电子供体的活性污泥的反硝化性能以及pH变化规律和动力学特性.结果表明,乙酸钠的比反硝化速率和比耗碳速率最高,分别为4.13 mg/(g.h)和29.8 mg/(g.h),但其反硝化能力最低.污泥水解酸化上清液的反硝化速率与乙酸钠相当.反硝化菌需经若干周期的驯化后才能适应甲醇和乙醇电子供体.当要求直接提高反硝化速率时,不宜选择甲醇和乙醇为碳源.而葡萄糖电子供体系统在前10~120 min出现短暂的"ρ(NOx--N)还原停滞平台",当大分子葡萄糖糖酵解为小分子有机物后,反硝化过程才顺利进行,糖酵解过程是葡萄糖反硝化过程的限速步骤.此外,不同电子供体反硝化过程pH变化规律可以间接指示反硝化动力学特性,其缺氧异养菌产率系数为0.68~0.73.  相似文献   

18.

粘性污泥膨胀下处理合成污水的营养物去除特性

彭赵旭1,2,, 赵中原2,娄天宇1, 姜昆1,李磊1

(1.郑州大学 水利科学与工程学院,郑州,450001;

2.哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨150090)

摘要:为探索粘性污泥膨胀对营养物去除的影响,考察了正常活性污泥与粘性膨胀污泥系统的脱氮除磷表现。结果表明,当COD负荷与C/N比分别在0.13 mgCOD.(mg MLSS.d)-1 和7.67时,粘性污泥膨胀对最大比NH4+-N 氧化速率的影响很小,但是最大比NO2--N氧化速率却从24.69 mg.(g.h)-1 骤降到 1.20 mg.(g.h)-1。和正常活性污泥相比,粘性膨胀污泥具有更大的粒径和更多的胞外聚合物(EPS),污泥絮体中的传质阻力可能是导致NO2--N氧化速率差异的主要原因。另外,本研究证明了粘性污泥膨胀有助于实现同步硝化反硝化(SND),其产生的大量EPS可以在除磷过程中发挥贮存作用的功能。

关键词:活性污泥; 脱氮; 粘性污泥膨胀; 硝化动力学; 磷吸收

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号