首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   

2.
In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings.  相似文献   

3.
A hybrid was synthesized by grafting polyhedral oligomeric silsesquioxane (POSS) to multiwalled carbon nanotubes (MWCNTs). The MWCNT/polymer composites produced using silsesquioxane grafted MWCNTs as a filler had a high electromagnetic interference shielding effectiveness. Homogeneous dispersion of silsesquioxane grafted MWCNTs occurred throughout the polymer without any aggregation, while a pristine MWCNT aggregate that integrated several nanotube domains existed in the polymer matrix. A comparative study of the optical transmittance, electrical, and electromagnetic interference shielding properties of poly(l-lactide) (PLLA)/MWCNT composites based on pristine MWCNTs and silsesquioxane grafted MWCNTs was carried out. A high electromagnetic interference shielding effectiveness (15–16 dB) was obtained in the 36–50 GHz range at a relatively low filler loading (4 wt%) in the PLLA/silsesquioxane grafted MWCNT composite.  相似文献   

4.
Poly (methyl methacrylate) (PMMA) bone cement—multi walled carbon nanotube (MWCNT) nanocomposites with weight loadings ranging from 0.1 to 1.0 wt% were prepared. The MWCNTs investigated were unfunctionalised, carboxyl and amine functionalised MWCNTs. Mechanical properties of the resultant nanocomposite cements were characterised as per international standards for acrylic resin cements. These mechanical properties were influenced by the type and wt% loading of MWCNT used. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect and hindering crack propagation. MWCNTs agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the weight fraction and functionality of MWCNTs incorporated into the cement.  相似文献   

5.
A simplified and an eco-friendly approach to develop polychloroprene rubber composites with high electrical conductivity is reported. The usage of room temperature ionic liquid, 1-butyl 3-methyl imidazolium bis(trifluoromethylsulphonyl)imide and a low concentration (5 phr) of commercial grade multi-walled carbon nanotubes (MWCNTs) in polychloroprene rubber exhibited an electrical conductivity of 0.1 S/cm with a stretchability >500%. The physical (cation-pi/pi-pi) interaction between the ionic liquid and the MWCNTs is evidenced by Raman spectroscopy. Transmission electron microscopy images exhibit an improved dispersion of the BMI modified tubes in matrix at various magnification scales. The dependency of dynamic properties on the concentration of ionic liquid at constant loading of nanotubes supports the fact that ionic liquid assists in the formation of filler-filler networks. The tensile modulus of 3 phr loaded modified MWCNT/CR composite is increased by 50% with regard to that of the unmodified MWCNT/CR composite. Mooney-Rivlin plot displays the existence of rubber-filler interactions.  相似文献   

6.
Highly-oriented polyoxymethylene (POM)/multi-walled carbon nanotube (MWCNT) composites were fabricated through solid hot stretching technology. With the draw ratio as high as 900%, the oriented composites exhibited much improved thermal conductivity and mechanical properties along the stretching direction compared with that of the isotropic samples before drawing. The thermal conductivity of the composite with 11.6 vol.% MWCNTs can reach as high as 1.2 W/m K after drawing. Microstructure observation demonstrated that the POM matrix had an ordered fibrillar bundle structure and MWCNTs in the composite tended to align parallel to the stretching direction. Wide-angle X-ray diffraction results showed that the crystal axis of the POM matrix was preferentially oriented perpendicular to the draw direction, while MWCNTs were preferentially oriented parallel to the draw direction. The strong interaction between the POM matrix and the MWCNTs hindered the orientation movement of molecules of POM, but induced the orientation movement of MWCNTs.  相似文献   

7.
Solution styrene butadiene rubber (S-SBR) composites reinforced with graphene nanoplatelets (GnPs), expanded graphite (EG), and multiwalled carbon nanotubes (MWCNTs) were prepared and the electrical and various mechanical properties were compared to understand the specific dispersion and reinforcement behaviours of these nanostructured fillers. The electrical resistivity of the rubber composite gradually decreased with the increase of filler amount in the composite. The electrical percolation behaviour was found to be started at 15 phr (parts per hundred rubber) for GnP and 20 phr for EG filled systems, whereas a sharp drop was found at 5 phr for MWCNT based composites. At a particular filler loading, dynamic mechanical analysis and tensile test showed a significant improvement of the mechanical properties of the composites comprised of MWCNT followed by GnP and then EG. The high aspect ratio of MWCNT enabled to form a network at low filler loading and, consequently, a good reinforcement effect was observed. To investigate the effect of hybrid fillers, MWCNT (up to 5 phr) were added in a selected composition of EG based compounds. The formation of a mixed filler network showed a synergistic effect on the improvement of electrical as well as various mechanical properties.  相似文献   

8.
This paper presents an experimental study on the development of hybrid composites comprising of multi-walled carbon nanotubes (MWCNTs) and natural filler (oil palm shell (OPS) powder) within unsaturated polyester (UP) matrix. The results revealed that the dispersion of pristine MWCNTs in the polymer matrix was strongly enhanced through use of the solvent mixing method assisted by ultrasonication. Four different solvents were investigated, namely, ethanol, methanol, styrene and acetone. The best compatibility with minimum side effects on the curing of the polyester resin was exhibited by the styrene solvent and this produced the maximum tensile and flexural properties of the resulting nanocomposites. A relatively small amount of pristine MWCNTs well dispersed within the natural filler polyester composite was found to be capable of improving mechanical properties of hybrid composite. However, increasing the MWCNT amount resulted in increased void content within the matrix due to an associated rapid increase in viscosity of the mixture during processing. Due to this phenomenon, the maximum tensile and flexural strengths of the hybrid composites were achieved at MWCNT contents of 0.2 to 0.4 phr and then declined for higher MWCNT amounts. The flexural modulus also experienced its peak at 0.4 phr MWCNT content whereas the tensile modulus exhibited a general decrease with increasing MWCNT content. Thermal stability analysis using TGA under an oxidative atmosphere showed that adding MWCNTs shifted the endset degradation temperature of the hybrid composite to a higher temperature.  相似文献   

9.
Commercial Udel® poly(ether sulfone) (PSU) was filled with three different commercially available multiwalled carbon nanotubes (MWCNTs) by small scale melt mixing. The MWCNTs were as grown NC 7000 and two of its derivatives prepared by ball milling treatment. One of them was unmodified (NC 3150); the other was amino modified (NC 3152). The main difference beside the reactivity was the reduced aspect ratio of NC 3150 and NC 3152 caused by ball milling process. All PSU/MWCNT composites with similar filler content were prepared under fixed processing conditions and comparative analysis of their electrical and mechanical properties were performed and were correlated with their microstructure, characterized by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A non-uniform MWCNT dispersion was observed in all composites. The MWCNTs were present in form of agglomerates in the size of 10–60 μm whereas the deagglomerated part was homogeneously distributed in the PSU matrix. The differences in the agglomeration states correlate with the variations of properties between different PSU/MWCNT composites. The lowest electrical percolation threshold of 0.25–0.5 wt.% was observed for the shortened non-functionalized MWCNT composites and the highest for amine-modified MWCNT composites (ca. 1.5 wt.%). The tensile behavior of the three composites was only slightly altered with CNT loading as compared to the pure PSU. However, the elongation at break showed a reduction with MWCNT loading and the reduction was least for composite with best MWCNT dispersion.  相似文献   

10.
Carbon nanotube-based nanocomposites of chitosan were successfully prepared by a simple solution-evaporation method. Multiwalled carbon nanotubes (MWCNTs) were treated by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) in water before mixed with a chitosan solution to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. The morphological and mechanical properties of the prepared PEDOT-PSS/MWCNT/chitosan nanocomposites have been characterized with field emission scanning electron microscopy (FESEM) and tensile tests. MWCNTs were observed to be homogeneously dispersed throughout the chitosan matrix. As compared with the neat chitosan, the tensile strength and modulus of the nanocomposite were greatly improved by about 61% and 34%, respectively, with incorporation of only 0.5 wt.% of MWCNTs into the chitosan matrix. The comparison of mechanical properties for PEDOT-PSS/MWCNT/chitosan and pristine MWCNT/chitosan nanocomposites has been made. The hardness of the nanocomposites was also evaluated by nanoindentation.  相似文献   

11.
Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.  相似文献   

12.
How to improve mechanical properties of polylactic acid with bamboo fibers   总被引:1,自引:0,他引:1  
Bamboo fibers (BF) were mixed in polylactic acid (PLA) to improve its mechanical properties: impact strength and heat resistance. Three different types of BF were extracted from raw bamboo by either sodium hydroxide (NaOH) treatment or steam explosion in conjunction with mechanical processing. They were designated as “short fiber bundle,” “alkali-treated filament” and “steam-exploded filament,” respectively. Composite samples were fabricated by injection molding using PLA/BF pellets prepared by a twin-screw extruding machine. Among them, the highest bending strength was obtained when steam-exploded filaments were put into PLA matrix. Impact strength of PLA was not greatly improved by addition of short fiber bundles as well as both filaments. In order to improve the impact strength of PLA/BF composites, PLA composite samples were alternatively fabricated by hot pressing using medium length bamboo fiber bundles (MFB) to avoid the decrease in fiber length at fabrication. Impact strength of PLA/MFB composite significantly increased, in which long fiber bundles were pulled out from the matrix. The addition of BF improves thermal properties and heat resistance of PLA/BF composites due to the constraint of deformation of PLA in conjunction with crystallinity promoted by anneal (at 110 °C for 5 h).  相似文献   

13.
The 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC)-grafted multiwalled carbon nanotubes (MWCNTs) composite (HACC–MWCNTs) was prepared via covalently grafting HACC onto the surfaces of MWCNT. The properties and morphology of the resulting materials were monitored by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results of FTIR and TGA indicated that the interaction between MWCNT and HACC was grafting through covalent links. TEM and SEM images confirmed MWCNT stained with an extra phase after the grafting process that was presumed to come from HACC. The dispersion of MWCNT in H2O was improved after the grafting of HACC,which was in agreement with the positive charge of HACC–MWCNT at any pH value. The electrochemical properties of HACC–MWCNT were investigated by cyclic voltammetry (CV). The dramatic improvement in the electrostatic interactions between HACC–MWCNT/electrode and anionic complexes was distinguished from the response of chitosan-MWCNT/electrode and non-modified electrode. According to the experimental results, the HACC–MWCNT had a possibility to serve as a novel material for innovative anionic sensor.  相似文献   

14.
We fabricated a uniformly dispersed and aligned multi-walled carbon nanotube reinforced aluminum matrix (Al–MWCNT) composite with minimal work hardening and without interfacial chemical compounds. In this paper, the direct load-bearing contribution of MWCNTs on the Al–MWCNT composite was investigated in detail for various volume fractions of MWCNTs. For up to 0.6 vol% of MWCNTs, the ultimate tensile strength (UTS) of the Al–MWCNT composite increased with the conservation of the remarkable failure elongation of Al. These UTS values are consistent with shear lag model. We also observed an uncommon multi-wall-type failure of MWCNTs during the hot extrusion process. However, owing to the agglomeration of MWCNTs in the Al matrix, the UTS deviated significantly from the shear lag model and the remarkable failure elongation of Al decreased. The possibility of strengthening, without degrading ductility, was demonstrated by exploiting directly the load-bearing ability of individually and uniformly dispersed aligned MWCNTs.  相似文献   

15.

Incorporation of rigid nanoparticles is the most effective means of improving polymer properties. Montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNTs) are legendary in this field for their individual exceptional properties. A synergistic phenomenon is induced between these two particles when they are simultaneously incorporated into polymers. At a definite nanofillers concentration, called the percolation threshold, there is a sudden change in nanocomposite properties due to the formation of a 3D-structured network of the nanoparticles within the matrix. In this work, the properties of poly(lactic acid) (PLA) nanocomposites filled with different fractions of MMT/MWCNTs hybrid (0.5–2.0 wt%) were analyzed. In particular, the percolation threshold of the MMT/MWCNTs hybrid was uniquely identified by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical thermal analysis. The structural studies by X-ray diffraction and Fourier-transform infrared spectroscopy were also associated with the percolation threshold of MMT/MWCNTs in PLA. At 1.0 wt% MMT/MWCNTs concentration, the complete exfoliation of the particles was maintained, and the thermal characteristics such as glass transition, crystallization and melting temperatures reached their plateau at this hybrid concentration. Moreover, the thermal degradation and viscoelastic parameters showed their peak values at this critical point, which is correlated with the formation of the percolation threshold within the matrix. The morphological studies confirmed the homogeneous dispersion of MMT/MWCNTs in PLA up to a concentration of 1.0 wt%. At 2.0 wt% MMT/MWCNTs, few aggregations occurred in the PLA-based composite, confirming that the percolation threshold was formed at a lower concentration of MMT/MWCNTs nanoparticles.

  相似文献   

16.
《Composites Science and Technology》2007,67(11-12):2564-2573
The precursor of polyimide, polyamic acid, was prepared by reacting 4,4′-oxydianiline (ODA) with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA). Unmodified, acid-modified and amine-modified multiwall carbon nanotubes (MWCNT) were separately added to the polyamic acid and heated to 300 °C to produce polyimide/carbon nanotube composite. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) microphotographs reveal that acid-modified MWCNT and amine-modified MWCNT were dispersed uniformly in the polyimide matrix. The effect of the acid and amine-modified MWCNTs on the surface and volume electrical resistivities of MWCNT/polyimide composites were investigated . The surface electrical resistivity of the nanocomposites decreased from 1.28 × 1015 Ω/cm2 (neat polyimide) to 7.59 × 106 Ω/cm2 (6.98 wt% unmodified MWCNT content). Adding MWCNTs influenced the glass transition temperatures of the nanocomposites. Modified MWCNTs significance enhanced the mechanical properties of the nanocomposites. The tensile strength of the MWCNT/polyimide composite was increased from 102 MPa (neat polyimide) 134 MPa (6.98 wt% acid modified MWCNT/polyimide composites).  相似文献   

17.
Response surface methodology (RSM) coupled with the central composite design (CCD) was used to optimize the mechanical properties of calcium phosphate cement/multi-walled carbon nanotubes/bovine serum albumin (CPC/MWCNTs/BSA) composites. In this study, CPC composites were reinforced by multi-walled carbon nanotubes (MWCNTs) and bovine serum albumin (BSA) in order to induce high mechanical properties in the CPC/MWCNTs/BSA system. The effect of various process parameters on the compressive strength of CPC/MWCNTs/BSA composites was studied using design of experiments (DOE). The process parameters studied were: wt.% of MWCNTs (0.2–0.5 wt.%), wt.% of BSA (5–15 wt.%) and type of MWCNTs (e.g. as-pristine MWCNT (MWCNT-AP), hydroxyl group functionalized MWCNT (MWCNT-OH) and carboxyl group functionalized MWCNT (MWCNT-COOH)). Based on the CCD, a quadratic model was obtained to correlate the process parameters to the compressive strength of CPC/MWCNTs/BSA composites. From the analysis of variance (ANOVA), the most significant factor affected on the experimental design response was identified. The predicted compressive strength after process optimization was found to agree well with the experimental value. The results revealed that at 0.5 wt.% of MWCNT-OH and 15 wt.% of BSA, the highest compressive strength of 14 MPa was obtained.  相似文献   

18.
As the work of adhesion, W a, increases between a silica filler surface and a polymer matrix, the dynamic viscosity and the shear modulus of the composite material increase. The logarithms of these properties decrease linearly as W a decreases. At lower dynamic test frequencies, a change in W a has a more dramatic impact on these properties than at higher frequencies. An “effective silica particle size” model can be used to explain why W a affects the viscosity and the shear modulus of a composite. According to that model, the thickness of the interphase layer increases as the W a increases. An increase in effective particle size decreases the “free” polymer volume, and the decrease free volume polymer causes both the viscosity and the shear modulus to increase. Increasing the dynamic test frequency releases some of the immobilized polymer from the filler surface which causes the effective particle size to decrease. As the effective particle size decreases because of the increased testing frequency and approaches the mean size of the original filler, the impact of the W a value on viscosity and shear modulus should decrease. However, the friction experienced between the filler interphase and the polymer, the so called “skin friction”, depends on the magnitude of W a and the more general term, bond energy density (BED). The skin friction determines the viscosity of the composite, particularly at lower frequencies. Higher W a values induce higher skin friction and thereby higher flow resistance (viscosity) as polymer chains move along the filler surface.  相似文献   

19.
In this investigation, Polyetherimide (PEI) reinforced with multi-walled carbon nanotube (MWCNT) using novel melt blending technique. Surface of MWCNTs are modified by acid treatment as well as by plasma treatment. PEI nano composites with 2 wt% treated MWCNT shows about 15% improvement in mechanical properties when compared to unfilled PEI. The thermal decomposition kinetics of PEI/MWCNT nano composites has been critically analyzed by using Coats – Redfern model. The increase in activation energy for thermal degradation by 699 kJ/mol for 2 wt% MWCNT implies improvement in the thermal properties of PEI. Studies under Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM) depict significant interfacial adhesion with uniform dispersion of MWCNT in polymer matrix due to surface functionalization. 0.5 wt% chemically modified MWCNT shows typical alignment of MWCNT. There is a significant improvement in mechanical properties and thermal properties for surface functionalized MWCNT reinforced.  相似文献   

20.
A compatibilizer, poly(3-hexylthiophene)-graft-poly(t-butyl acrylate-co-acrylic acid) was synthesized, where the acrylic aid was formed by hydrolysis of t-butyl acrylate unit. It has been identified that poly(3-hexylthiophene) backbone of the compatibilizer interacts with multi-walled carbon nanotubes (MWCNTs) via ππ interaction and the acrylic acid unit of the graft chain interacts with Nylon 66 (N66) matrix via hydrogen bonding. When a small amount of compatibilizer was added to N66/MWCNT composites, MWCNTs were more homogeneously dispersed in N66 matrix than the case without compatibilizer. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号