首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
建立了S形刃球头立铣刀内前刀面、外前刀面及螺旋后刀面、平面后刀面的数学模型。该模型的建立为球头立铣刀刃磨参数选择及刃磨装置设计具有重要的作用。  相似文献   

2.
我厂自生产滚刀刃磨床以来,用锥面砂轮刃磨滚刀螺旋槽前刃面的中凸现象,即刃磨时的砂轮干涉问题,一直未得到妥善解决,从而使滚刀前刃面的非径向性误差,超出滚刀精度所允许的误差范围。为此,在我厂产品MG6425型高精度滚刀刃磨床上,配备成型砂轮修整器,  相似文献   

3.
整体式立铣刀刃磨仿真技术研究现状与发展趋势   总被引:2,自引:0,他引:2  
整体式立铣刀刃磨仿真是以立铣刀实际刃磨工艺为参考,构建数学模型,借助于计算机仿真实现立铣刀刃磨模型实时显示以及数控代码自动生成的技术,是提高整体式立铣刀研发效率和制造水平,提升产品整体性能和市场竞争力的最有效措施之一。整体式立铣刀刃磨仿真的研究内容主要包括刃磨过程数学建模和仿真系统软件实现两个方面。结合国内外研究现状,分析给出砂轮选型与数学建模,容屑槽刃磨、周刃后刀面刃磨、底刃前刀面刃磨、底刃后刀面刃磨数学建模以及刃磨仿真系统软件实施等方面的理论、方法、观点和成果。指出刃磨仿真系统未来的研究方向:刃磨模型精细化、刃磨仿真软件与参数化设计和切削仿真软件集成化、刃磨软件与工具磨床集成化。  相似文献   

4.
神经网络在加工螺旋面中的应用研究   总被引:1,自引:0,他引:1  
加工螺旋槽时,针对铣刀刃形的设计,应用包络面原理,采用神经网络方法建立了工件螺旋槽形与铣刀刃形之间的非线性关系模型,并通过工件螺旋槽端面截形模拟仿真出铣刀回转面刃形.仿真结果表明,采用神经网络的非线性逼近特性进行铣刀刃形的模拟设计,能够精确、快速地模拟出铣刀刃形.该模型可以验证加工螺旋槽铣刀刃形的正确性、铣刀和工件的干涉情况,以及在改变螺旋面参数时螺旋槽形的可加工性.  相似文献   

5.
一种新型球头立铣刀前刀面成型方法的研究   总被引:3,自引:0,他引:3  
何林 《现代机械》2001,(4):47-49
在分析现有球头立铣刀刃磨方法的基础上,提出了一种新的球头立铣刀前刀面刃磨方法。本文建立了该方法的数学模型,给出了前刀面方程,对球刃主切削刃的法前角分布、主切削刃的刃形进行了研究。  相似文献   

6.
《工具技术》2021,55(7)
基于锥形砂轮加工立铣刀螺旋槽的过程,介绍了在SolidWorks环境下,以砂轮形状、砂轮相对铣刀毛坯的安装位置、砂轮与铣刀毛坯端面的初始位置以及砂轮运动轨迹为条件,采用实体扫描切除功能模拟螺旋槽刃磨过程进行三维实体建模的方法;将建模过程参数化,分析了螺旋槽刃磨砂轮安装位置对螺旋槽槽型的影响,在此基础上提出了满足槽型设计参数的砂轮安装位置反向求解方法;基于立铣刀侧刃与端刃刃磨过程,依次建立立铣刀侧刃后刀面、端刃齿隙与端刃后刀面特征,获得与刃磨工艺相匹配的立铣刀三维实体模型。实例验证结果表明,该方法建立的三维实体模型符合设计参数要求,并且表面光滑可直接用于CAE仿真计算。  相似文献   

7.
为解决整体刀具容屑槽刃磨制造工艺设计过程中的砂轮形状和位姿求解问题,提出基于已有双斜面型(DOB型)砂轮库或基于DOB型砂轮尺寸和位姿组合优化的容屑槽刃磨成形工艺设计方法。首先,建立反映不同刃磨精度需求的目标函数,将容屑槽刃磨工艺制定问题转化为目标函数最小值求解问题;其次,作为目标函数核心组成部分,基于空间解析几何及图形算法建立具有强鲁棒性的容屑槽预测方法,实现根据已知砂轮形状和位姿快速求解加工获得的容屑槽端截线轮廓及前角、芯径、槽宽等关键结构参数;然后,基于砂轮位姿对容屑槽形状的影响规律,建立了基于环形拓扑小生境粒子群优化算法的目标函数最优解搜索方法。通过3个算例验证了研究成果的有效性。  相似文献   

8.
球头立铣刀刀刃曲线形状直接影响其切削性能和制造工艺,直线刃球头铣刀刀片易于刃磨,但切削性能差;螺旋刃切削性能好,但刃磨难度大,加工成本较高。分段直线刃搭接的折线刃球头铣刀刀片,既改善了直线刃的切削性能,又可在周边磨床上高效磨削,实现低成本制造。  相似文献   

9.
针对现有车刀刃磨方法的局限性,建立车刀各刀面刃磨数学模型,设计出刃磨装置,并进行仿真分析,通过车刀位姿调整,实现任意一个被刃磨刀面与砂轮的磨削平面重合,以获得最佳刃磨成形表面质量,最终为开发机床刀具刃磨中心奠定理论基础.  相似文献   

10.
螺旋槽几何结构是影响钻头切削性能和微孔加工质量的重要因素。螺旋槽形状主要取决于刃磨参数、砂轮形状参数以及砂轮位置参数,通过调整砂轮的形状与位置参数即可以获得所需的螺旋槽形状。通过分析砂轮和螺旋槽之间的相对运动关系,建立微细钻头螺旋槽型的刃磨数学模型,并基于Matlab软件对螺旋槽刃磨截形进行了数值仿真,分析了砂轮形状与位置参数对螺旋槽形状、径向前角和螺旋槽宽度的影响规律。研究结果表明砂轮边缘宽度、砂轮锥角、砂轮偏置角度和砂轮偏移距离对螺旋槽截形有明显的影响。随着砂轮边缘宽度和砂轮锥角的增大,径向前角没有变化,但是螺旋槽宽度增大,容屑空间明显增大;随着砂轮偏置角度的增大,螺旋槽径向前角明显增大,螺旋槽宽度减小;随着砂轮偏移距离的增大,径向前角变化较小,而螺旋槽宽度明显增大。基于所建立的刃磨数学模型,刃磨出不同螺旋槽型微细钻头,证实刃磨结果与仿真结果具有较好的一致性。采用所制备的微细钻头进行钻削试验,验证了螺旋槽结构对容屑与排屑能力具有重要影响。  相似文献   

11.
In this paper, new mathematical models and grinding methods of ball-end milling cutter were proposed based on the orthogonal spiral cutting edge curve. In order to avoid interference, a conical wheel was also designed and employed to grind the rake and rear faces of ball-end milling cutter on a five-axis grinder. Mathematical models of both rake face with equal rake angle and rear face with equal clearance angle were established to improve the machining characteristics of ball-end milling cutter. The design and simulation software of ball-end milling cutter was developed to design and optimize different shapes of both rake face and rear face. Furthermore, grinding experiment of the new ball-end milling cutter was carried out to confirm the validation of the mathematical models.  相似文献   

12.
The paper presents a geometric modelling approach for the precision design and NC machining of a concave-arc ball-end milling (CABEM) cutter which is an important tool for mould-making industries. This paper presents systematic models of the cutting edge, helical groove, and grinding wheel design for the NC machining of a CABEM cutter. Both the normal to the revolving axis and the tangent to the groove, are used to derive the required precision sectional profiles of the grinding wheel. In compliance with the maximal sectional radius of the cutter, the profile of the groove section and both the radial and axial cutting speeds of the grinding wheel are computed in sequence. Using the computer simulation results of the groove actually obtained, this paper proposes a method to resolve the problems of the residual revolving surface and the narrow cutting edge strip. This paper is intended to serve as a reference for the design and NC machining of cutters of this type .  相似文献   

13.
Having first defined the helical angle as the angle between the cutting edge and the axis of rotation of the cutter, this paper then presents design models for producing the cutting edge and groove of a ball-end cutter with concave-arc generator. The relative feed speeds of the grinding wheel in the radial and axial directions during NC machining of the cutter are derived based upon a given speed of rotation. The feed speed of the grinding wheel in the radial direction is modified according to the cross section of the groove that passes through the center of the cutter sphere. The paper presents a method for manufacturing a concave-arc ball-end (CABE) cutter using a 2-axis NC machine. The models that are used to calculate the actual obtained groove and the computer simulation method are also included. To further enhance the accuracy of the mathematical models, a compensatory machining process that eliminates residual profile on the revolving surface is presented. This paper provides a valuable reference for the design and machining of this cutter type.  相似文献   

14.
针对螺旋槽螺纹铣刀在磨削加工时内外侧磨削量不同的问题,通过齿形的数学建模和分析计算,提出了其磨削砂轮的修正量计算公式.同时编制了砂轮设计程序,实现了从螺纹铣刀参数到其磨削砂轮参数的自动转换.通过 AutoCAD 和 SolidWorks 应用开发,可以自动生成砂轮的二维图和三维模型.本文提出的方法可以提高螺纹铣刀磨削砂...  相似文献   

15.
The paper presents a mathematical model for producing a ball-end cutter by first defining the helical angle as the angle between the cutting edge and the centre-line axis. The velocities of the cutter in the radial and axial directions are then derived based on a given rotating speed. The radial feed speed of the grinding wheel is calculated according to the groove cross-section passing through the centre of the ball-end cutter. A ball-end cutter of constant helical angle is designed and produced by using a two-axis NC machine. To enhance the dimensional accuracy of the mathematical model, a compensatory grinding operation is also proposed and applied to the ball-end cutter. A ball-end milling cutter is selected for design and manufacture to illustrate the effectiveness of the proposed design and numerically controlled (NC) manufacturing procedure. The result of data verification indicates that the proposed procedure is systematic, straightforward and reliable. The ball-end cutter that is designed, refined and produced by using a simple two-axis NC machine is accurate enough to meet the specified tolerance.  相似文献   

16.
球头铣刀刃口曲线的求解及螺旋沟槽的二轴联动数控加工   总被引:11,自引:2,他引:9  
给出了球头螺旋铣刀三种不同螺旋刃口曲线的求解公式和二轴联动数控加工时砂轮的截形和相对运动求解模型,根据实得沟槽的模型和计算机模拟结果分析了存在的不足,并给出了相应的后处理方法。  相似文献   

17.
刘茂福  刘林枝 《机械》2011,38(11):53-56
提出了一种应用计算机绘图软件和OpenGL设计球头铣刀的方法,建立了一种球头铣刀的前刀面与后刀面的数学模型.通过OpenGL建模,建立了仿真处理系统和球头铣刀的螺旋柱面、球头(包括前刀面、排屑槽、主后刀面和副后刀面)和砂轮的三维仿真模型.应用数学模型和VC++软件平台,并利用OpenGL控制界面实现了设计结果的可视化及...  相似文献   

18.
A new grinding method using a torus-shaped grinding wheel and a machining path generation method with a novel moving coordinate system are proposed. With this new grinding method, the smooth spiral rake surface of a taper ball-end mill with constant helical angle and constant normal rake angle can be formed during one grinding process and the normal rake angle can be obtained accurately. The novel moving coordinate system is established based on taking account of both the cutting edge curve and the cutter body surface. By means of the novel moving coordinate system, the machining path generation becomes very simple. The proposed grinding method and the machining path generation method are verified by 3D simulation results.  相似文献   

19.
基于数控铣削加工仿真系统,研究了在虚拟制造环境下对球头铣刀磨损引起的曲面加工误差的预测与补偿。建立了与加工参数相关的球头铣刀磨损模型,用于预测球头铣刀切削刃的磨损量,提出了球头铣刀铣削加工误差的补偿方法,并通过实验验证了该方法的有效性。  相似文献   

20.
基于无瞬心包络的微细铣刀螺旋槽刃磨分析*   总被引:1,自引:0,他引:1  
螺旋沟槽属于复杂的空间螺旋面,砂轮与刀具的相对运动复杂,在微细立铣刀的制造过程中耗时最长、难度最大,精确、高效加工螺旋沟槽成为微细铣刀制造过程亟须解决的关键问题之一。基于无瞬心包络原理研究了微细铣刀螺旋沟槽的刃磨过程,提出一种微细螺旋铣刀轴向型线的计算模型,该模型避免了利用接触公法线求解时,因砂轮截形上的奇点和圆滑二次曲线导致无法求解的情况,计算过程与求解简单,适用于对砂轮廓形复杂时刃磨求解。在所建模型基础上分析了砂轮形状和加工参数对螺旋槽型形状的影响,以及砂轮摆角和前刀面宽度对径向前角的影响。通过刃磨验证了模型与分析的正确性,试验证明实际加工的微细铣刀沟槽截形与包络计算的沟槽型线几何形状参数吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号