首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
可重构模块化机器人是机器人学的一个新的发展方向,其研究的核心和基础问题是可重构机器人的模块设计以及模块组合的运动规划。设计了一种新型可重构模块化机器人,该机器人具有独特的平面连接机构,实现了结构、驱动、运动和功能的模块化,能够根据需要重新构形,完成实时任务。分别介绍了模块单元的机械结构设计、连接机构以及基于CAN总线的控制系统结构。构建了基于OpenGL技术和VC++开发平台的机器人仿真实验系统,仿真机器人构形和运动,验证了模块设计的正确性和整体运动构形规划方法的有效性。  相似文献   

2.
可重构星球探测机器人控制系统的设计与实现   总被引:1,自引:1,他引:0  
介绍了一种新型可重构星球探测机器人系统. 基于这种机器人功能和结构的分解特点,设计了模块化控制系统,使用CAN总线技术作为模块间主要通讯方式. 提出了控制原理和集中式控制算法,有效地实现了一台子机器人在不同模式状态下自主运动和操作的控制, 并通过原理样机实验验证了这套控制系统的可行性.  相似文献   

3.
可重构模块机器人倾翻稳定性研究   总被引:4,自引:2,他引:2  
李斌  刘金国  谈大龙 《机器人》2005,27(3):241-246
介绍了一种可重构模块机器人,它可以通过构形的变化来提高系统的稳定性和抗倾翻能力.该机器人由3个模块组成,采用履带驱动,具有直线、三角、并排3种对称构形.在对移动机器人的倾翻因素和倾翻对策等问题进行分析的基础上,提出稳定锥方法,用倾翻性能指数对移动机器人的静、动态稳定性进行综合判定. 讨论了变形机器人3种对称构形在仰俯、偏转、倾斜等干扰组合作用下的倾翻性能指数和综合稳定性,并进行了仿真实验和非结构环境实验.  相似文献   

4.
文中针对自重构机器人的重构问题提出了一种基于网络的分析方法.自重构模块机器人"AMOEBA-I"的9种不同构形组成了一个构形网络.机器人的每种构形被看成带有权值的有向构形网络中的一个节点.一种构形向另一种构形的转换可描述为一条非负值的有向路径.将图论应用于构形变化的分析,根据构形的拓扑信息相应定义了重构路径、可重构矩阵和路径矩阵.在此基础上,将图论中的算法应用于重构路径的计数和最佳重构路径的选择.数值分析与仿真实验结果验证了该方法的可行性.同时,该方法还可以用于其他自重构机器人的构形控制与自重构规划.  相似文献   

5.
可重构模块机器人分散容错控制   总被引:2,自引:1,他引:1  
针对可重构模块机器人的执行器故障,提出一种基于自适应模糊系统的分散被动容错控制方法.该方法不需要机器人动力学模型与模块之间的信息交换,模块控制器分别采用间接和直接自适应方法设计,自适应参数的更新律基于Lyapunov稳定性理论设计,保证了系统的稳定性和H∞跟踪性能.数值仿真结果表明了所提出方法的有效性.  相似文献   

6.
基于机器人的可重构装配系统   总被引:1,自引:0,他引:1  
本文分析了市场全球化给企业带来的挑战和机遇 ,提出了基于机器人的可重构装配系统 .在分析国外在可重构制造领域的研究状况的基础上 ,提出了基于机器人可重构装配系统的设计内容和方法 ,并提出了可重构装配系统今后需研究的方向  相似文献   

7.
曹建福  汪霖 《控制工程》2013,20(2):289-294
针对模块化机器人控制系统的重构问题,提出了一种柔性的嵌入式控制系统体系结构.该控制系统各种软硬件功能模块被抽取成标准构件,硬件模块设计采用了双核处理器以便满足计算能力和小型化的需求,模块之间通过标准的现场总线接口进行通信.机器人控制软件采用了基于构件的组态结构,它由柔性嵌入式控制系统开发平台、机器人功能构件库和运动规划与控制算法构件库三部分组成,实时性和非实时性的软件模块都按标准接口进行封装.机器人轨迹插补运算采用双DDA算法,逆运动学求解利用相邻轨迹点的关节坐标绝对增量最小原则去除冗余解.该嵌入式控制系统在六关节工业机器人选行了应用,实验结果表明它能适应机器人机械结构和作业任务的变化,使系统开发周期大大缩短.  相似文献   

8.
刘杰  吴强  赵全伟 《计算机工程》2012,38(3):276-279,283
为消除重构时间对可重构计算系统性能的影响,针对多重构模块,提出一种基于动态部分可重构技术的顺序型应用程序模块映射算法。利用动态可重构技术的高效性和灵活性,通过隐藏重构时间,达到减少程序执行时间和提高系统性能的目的。基于JPEG编码测试实例的实验结果表明,运用该算法实现的模块映射方案其程序执行速度是软件实现方式的3.31倍,是硬件方式的2.59倍。  相似文献   

9.
张丹  赵荣彩  单征  韩林  瞿进 《计算机科学》2012,39(3):276-278
软硬件任务划分是可重构系统开发过程中的重要设计步骤,其划分结果直接影响到可重构系统的性能。目前的软硬件任务划分技术大多只考虑了对应用程序或算法的划分结果,忽略了FPGA在配置和通信时的开销,从而导致实际应用效果不理想。介绍了一种基于性能评估的软硬件任务划分方法,即通过对FPGA计算开销、配置开销、通信开销的预评估测试,结合改进的模拟退火算法得出可重构系统中的软硬任务划分结果。实验结果表明,该划分方法具有较好的划分效果和算法收敛速度。  相似文献   

10.
独立操作型可重构机器人的单个模块具备独立运动、操作和采样能力,顺应从结构环境中定点作业向非结构环境中自主作业的发展要求,能够更好地应用到环境复杂、危险性高的场合.现有的构形研究主要针对依赖运动型、独立运动型可重构机器人,解决独立操作型可重构机器人构形问题时具有局限性.针对可重构机器人重构目的,提出矢量构形,将构形研究内容扩展到拓扑结构、运动趋势方向和各模块的姿态方位及连接关系,提出模块状态向量和构形状态矩阵实现该类可重构机器人群体构形的表达,对应的变换运算和操作可以表达、触发模块行为运动和构形重构,提出以工作负荷为优化目标的构形组合重构优化方法、以姿态方位工作负荷和连接工作负荷的组合为优化目标的构形变换重构优化方法,通过重构优化获得模块在构形重构中状态对应变换关系,作为构形重构规划和控制的基础.  相似文献   

11.
To perform the decommissioning on the inaccessible area to human workers, the need to develop a wall-climbing robot is increasing. In these wall-climbing robots, high mobility and stability on a surface of walls are most important required features. To achieve both of these features, the new type of arm-equipped reconfigurable multi-modules wall-climbing robot was proposed in this research. The stability and high mobility can be achieved by reconfiguration using attached arm as a connection mechanism. And the robot system composed of two mobile modules and 6DOF manipulator was developed as a proof mechanism. In this robot, for energy efficient and stable mobility at the environment of steel structure, the adsorption method based on magnet was selected and its functionality was confirmed. And, to enable intuitive control, the kinematic solver was developed and verified. Finally, basic experiment of motion test was performed, and it was confirmed that the proposed wall-climbing robot satisfies required functions, such as high mobility and stability.  相似文献   

12.
传统机器人步态控制系统对路线把握能力不强,导致对机器人步态的控制精度较差、时间过长。为解决上述问题,基于CARLA-PSO组合模型设计了一种新的机器人步态控制系统。硬件部分挑选操作性能较高的硬件元件系统,精准掌控系统中心点的位置,并在此位置上加大数据研究力度,通过数据监视模块及数据控制模块获取的数据结果,利用目标参数控制模块实施数据处理操作;以收集的硬件信息作为软件操作基础,利用CARLA-PSO组合模型得出机器人步态控制局部及全局最优解,综合运用软件控制算法整合获取的步态信息,调控路径信息,结合传感角信息,清理无关步态数据,完成机器人步态控制系统设计。实验结果表明,基于CARLA-PSO组合模型的机器人步态控制系统能够更精准地把控路线,相较于传统控制系统,设计的系统控制时间提高了15.2%,具有较好的控制效果。  相似文献   

13.
Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, a user-friendly automatic polishing system was developed in this research. The polishing system is composed of two subsystems, a three-axis machining center and a two-axis polishing robot. The developed polishing system with five degrees of freedom is able to keep the polishing tool normal to the die surface during operation. A sliding mode control algorithm with velocity compensation is proposed to reduce tracking errors. Trajectory tracking experiments showed that the effect of reducing the tracking error by the proposed sliding mode control is superior to that by the proportional derivative control. The polishing data is generated from computer-aided design (CAD) data or from teaching data by PolyCAM, a computer-aided manufacturing (CAM) system consisting of 4 modules: a geometric modeller, a CAD data exchange module, a polishing data generation module, and a graphic simulator. To evaluate the performance of the polishing robot system, some polishing experiments on a shadow-mask die were performed.  相似文献   

14.
This paper proposes using CORBA as communication architecture to integrate network-distributed software and robotic systems in support systems for the aged or disabled. The proposed method keeps system costs low and expands availability. Its high scaling and inter-operating ability allows clients and server objects that are written in different languages, run in different operating systems, and connected to different networks to inter-operate. It also enables the system to be extended and integrated with other technologies and applications distributed over the Internet. Based on CORBA, we developed hardware base including a robot arm and an omnidirectional mobile robot and application servers including a task-level robot arm control server, live feedback image server, mobile robot control server and iGPS server. By remotely controlling mobile robot to cooperate with the robot arm, the caregivers or family member can use the developed system for some basic services to the aged or disabled.  相似文献   

15.
The increased use of changeable characteristics in modern manufacturing and robotic systems and applications call for improved system control design that offers some degree of reconfigurability. The need for control reconfiguration of robotic systems arises due to some inherent characteristics of the robotic system, variations of robot parameters due to environmental changes, major task changes typical in production changeover or manufacturing system reconfiguration, or geometry changes due to the reconfiguration of modular manipulators. In this paper, a reconfigurable controller, the Supervisory Control Switching System (SCSS), is proposed to meet the new on-line demands for changeability in robotic systems. The SCSS is capable of selecting the most suitable controller for a particular task or situation, from separate controllers designed a priori. The applicability and effectiveness of the developed switching control scheme have been illustrated through computer simulations of an AdeptOne SCARA manipulators carrying out assembly tasks.  相似文献   

16.
为提高物流周转智能机器人的环境感知能力和避障能力,降低智能机器人运行中碰撞障碍物的概率,设计了一种基于CPLD控制模块的物流周转智能机器人控制系统;以CPLD控制器为核心,调整A/D模拟采集接口模块信号的连接形式,并设置与PWM寄存器相关的连接参数;给出了主机智能程序的决策流程,并适时调整PWM寄存器的整流参数,提升控制指令执行向量的匹配精度,以实现对智能机器人运动轨迹的精确控制;与传统机器人控制系统相比,基于CPLD控制模块的智能机器人能够更准确地感知外界环境的变化,精确规避障碍物。  相似文献   

17.
P.S. Pa   《Robotics and Computer》2009,25(4-5):804-809
Modern industries use many types of robots. In addition to general robotic arms, bipedal, tripedal, and quadrupedal robots, which were originally developed as toys, are gradually being used for multiple applications in manufacturing processes. This research begins with establishing the platform for four-footed robots with multiple functions, high sensitivity, and modular assembly and this is how a fundamental model of the industrial robots is constructed. Under additional loads, the four feet of the quadrupedal robot reinforce its carrying ability and reliability compared to bipedal or tripedal robots, which helps it to carry more objects and enhances functionality. Based on different requirements and demands from the manufacturing processes, the highly sensitive four-footed robot provides an expandable interface to add different sensing components. In addition, when combined with a wireless communication module or independent 1.2 GHz radio frequency CCD wireless image transmission system, the user can control the robot remotely and instantly. The design helps the four-footed robot to expand its applications. By assembling and disassembling modules and changing the sensing components, the highly sensitive four-footed robot can be used for different tasks. Moreover, the remote control function of the robot will increase interaction with human beings, so it can become highly become involved in people's lives. The platform of the four-footed robot will become a design reference for the commercialization of different industrial robots, and it will provide the design of industrial robots with more options and useful applications.  相似文献   

18.
《Advanced Robotics》2013,27(5-6):689-709
This paper presents the development of a compact laparoscopic assistant robot. The robot was designed to increase convenience and reduce possible interference with surgical staff by confining the majority of motions inside the abdomen. Its size was miniaturized as much as possible for convenient handling. A bending mechanism composed of several articulated joints was introduced to produce motions inside the abdomen. The proposed assistant robot can generate 3-DOF motion, including 2-DOF internal bending motion and 1-DOF external linear motion. Since the robot itself functions as a laparoscope, a small CCD camera module and a bundle of optical fibers were integrated as part of the system. For accurate control, mathematical modeling of the bending mechanism and a method of hysteresis compensation were introduced and implemented. For the control of the robot, a voice interface and a visual-servoing method were implemented. The performance of the developed system was tested through solo-surgery of in vivo porcine cholecystectomy. It was found that the views generated by the bending mechanism were sufficient throughout the surgery. Since the robot has functions comparable to the previously developed systems, while retaining its compactness, it is expected to be a useful device for human cholecystectomy.  相似文献   

19.
This paper presents a methodology for the realization of intelligent, task-based reconfiguration of the computational hardware for mobile robot applications. Task requirements are first partitioned into requirements on the system hardware and software. Architecture is proposed that enables these requirements to be addressed through appropriate hardware and software components. Hardware–software co-design and hardware reconfiguration are utilized to design robotic systems that are fault-tolerant and have improved reliability. It is shown that this design enables the implementation of efficient controllers for each task of the robot thereby permitting better operational efficiency using fixed computational resources. The approach is validated through case studies where a team of robots is configured and the behavior of the robots is dynamically modified at run-time. It is demonstrated through this implementation that the design procedure results in increased flexibility in configuration at run-time. The ability to reconfigure the resources also aids collaboration between robots, and results in improved performance and fault tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号