首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
本文研究了乳糖和蔗糖及其添加量对嗜酸乳杆菌和鼠李糖乳杆菌发酵豆腐黄浆水产酸能力、抗氧化能力和抑菌能力的影响,研究结果表明,添加蔗糖能够提高乳酸菌的产酸能力,其中添加5%的蔗糖发酵24 h时,嗜酸乳杆菌和鼠李糖乳杆菌发酵黄浆水的酸度值分别为95.80 oT和93.68 oT;添加蔗糖也可以增强嗜酸乳杆菌和鼠李糖乳杆菌发酵黄浆水的抗氧化能力,其中添加5%的蔗糖发酵48 h后效果最好,还原力分别为2.57和2.47 mM生育酚/mL样品、清除ABTS自由基分别为37.69和37.98 mM生育酚/mL样品、螯合二价铁离子的能力分别为75.69%和78.70%,菌种之间没有显著性差异;此外,发酵24 h的黄浆水可以抑制金黄色葡萄球菌和大肠杆菌的生长,但对蜡样芽孢杆菌没有抑制效果,其中嗜酸乳杆菌发酵的黄浆水抑菌能力更强,添加1%的蔗糖后发酵黄浆水的抑菌能力稍有增强。  相似文献   

2.
选取植物乳杆菌(Lactobacillus plantarum)、嗜酸乳杆菌(Lactobacillus acidophilus)和清酒乳杆菌(Lactobacillus sakei)对黄浆水进行发酵,以酸度值、活菌数、DPPH自由基清除率、羟自由基清除率、ABTS自由基清除率及铁还原能力为指标,探究3种乳酸菌发酵黄浆水的可行性及对黄浆水抗氧化活性的影响,并测定其总酚和总黄酮含量。结果显示,3种乳酸菌均可在黄浆水中生长产酸,植物乳杆菌与嗜酸乳杆菌的产酸能力与活菌数显著高于清酒乳杆菌,3种菌株组合发酵时黄浆水的DPPH自由基清除率最高,且与发酵过程中总酚含量变化呈显著正相关。发酵后黄浆水提取物对DPPH自由基的清除率IC_(50)值由3.51 mg/m L变为2.43 mg/m L,对羟自由基的清除率IC_(50)值由3.58 mg/mL变为1.82 mg/mL,对ABTS自由基的清除率IC_(50)值由0.90 mg/m L变为0.38 mg/m L,FRAP值由从1.24 mmol/L Fe SO4升高到1.62 mmol/L FeSO_4。  相似文献   

3.
刘力  李理 《食品与机械》2015,31(2):11-15
为了获得优质的豆腐凝固剂,应用从自然发酵的酸浆水中分离的3个菌株(解淀粉杆菌L5、L6以及阿米塞毕赤氏酵母Y),分别进行单菌、双菌和三菌发酵试验,研究其产酸能力和抗氧化活性。结果表明:两个解淀粉乳杆菌菌株均可在豆腐黄浆水生长产酸,其中菌株L6发酵豆腐黄浆水产酸能力更强,35℃发酵60 h后,酸度达到65.11oT,而3个菌株进行组合发酵时也有较强的产酸能力,在发酵60 h后,酸度也达到65.44oT。经过解淀粉乳杆菌L6发酵后,酸浆水还原Fe3+的能力和清除DPPH自由基的能力略有增加,螯合Fe2+的能力显著增强,在发酵48 h时达到54.45%;与L6不同,解淀粉乳杆菌L5发酵制备的酸浆水螯合Fe2+的能力随着发酵时间延长而明显下降;阿米塞毕赤氏酵母Y发酵制备的酸浆水具有良好的还原Fe3+的能力、清除DPPH自由基的能力以及螯合Fe2+的能力;当3个菌株组合发酵时,其产酸能力以及酸浆水还原Fe3+的能力、清除DPPH自由基的能力和螯合Fe2+的能力均比L6+Y双菌株发酵制备的酸浆水强。综合得出,在发酵豆腐黄浆水产酸和抗氧化能力方面,单菌株L6最优,组合发酵时L5+L6+Y为最优。  相似文献   

4.
以不同乳酸菌(鼠李糖乳杆菌、植物乳杆菌、粪肠球菌、嗜酸乳杆菌)发酵的留兰香纯露为研究对象,通过测定其DPPH 自由基清除能力、ABTS+自由基清除能力、·OH 清除能力、O2-自由基清除能力、总还原力,对其抗氧化活性进行评价。结果表明,留兰香纯露具有一定的体外抗氧化活性,且在一定范围内,体积分数越高,抗氧化性越好。与未发酵的纯露相比,留兰香纯露经不同乳酸菌发酵后在抗氧化方面更具优势。经发酵的留兰香纯露对DPPH 自由基、ABTS+自由基、·OH、O2-自由基的清除能力以及总还原力明显高于留兰香纯露及乳酸菌发酵液,尤其是·OH 清除能力和总还原力。对比不同体积分数纯露经不同乳酸菌发酵后体外抗氧化能力,结果表明,当留兰香纯露体积分数为60%时,其DPPH 自由基、ABTS+自由基、·OH、O2-自由基的清除能力及总还原力均较高。综上所述,经鼠李糖乳杆菌、植物乳杆菌、粪肠球菌、嗜酸乳杆菌发酵的留兰香纯露均有良好的体外抗氧化能力,且以60%时抗氧化力较佳。  相似文献   

5.
采用植物乳杆菌(Lactobacillus plantarum)、嗜酸乳杆菌(Lactobacillus acidophilus)和清酒乳杆菌(Lactobacillus sakei)3种乳酸菌对黄浆水进行组合发酵,以发酵液DPPH自由基清除率为评价指标,研究发酵温度、发酵时间、脱脂乳粉添加量、葡萄糖添加量和接种量对发酵液的影响。在单因素试验基础上,采用响应面法优化制备高抗氧化活性黄浆水发酵液的工艺条件。结果表明最佳发酵参数为:接种量1%、发酵温度37℃、发酵时间37.50 h、脱脂乳粉添加量8%、葡萄糖添加量5%。在此条件下制备的黄浆水发酵液DPPH自由基清除率为82.36%。抗氧化活性试验表明:黄浆水发酵液提取物抗氧化能力得到显著提升,其清除DPPH自由基、羟自由基和ABTS自由基的半抑制质量浓度(IC50)分别为2.03 mg/mL、1.12 mg/mL和0.30 mg/mL。  相似文献   

6.
4 种乳酸菌体外抗氧化能力的比较研究   总被引:3,自引:0,他引:3  
刘洋  郭宇星  潘道东 《食品科学》2012,33(11):25-29
通过抗脂质过氧化、清除DPPH自由基、清除超氧阴离子自由基(O2- ·)、还原力、清除羟自由基实验对发酵乳杆菌、乳酸乳球菌、嗜酸乳杆菌和瑞士乳杆菌4种乳酸菌发酵上清液和胞内提取物的抗氧化能力进行研究。结果表明:4种乳酸菌的具有不同的抗氧化能力,其中瑞士乳杆菌的羟自由基清除能力、DPPH自由基清除能力和还原能力相对较高,乳酸乳球菌和嗜酸乳杆菌清除O2- ·能力相对较强,发酵乳杆菌抗脂质过氧化能力为最强。实验还初步研究乳酸菌的抗氧化机理,显示乳酸菌存在SOD和GSH-Px,这可能与乳酸菌的抗氧化作用有一定相关性。  相似文献   

7.
为筛选合适凤丹花瓣发酵的乳酸菌菌种,比较了8种乳酸菌(植物乳杆菌、保加利亚乳杆菌、干酪乳杆菌、瑞士乳杆菌、鼠李糖乳杆菌、嗜酸乳杆菌、副干酪乳杆菌和嗜热链球菌)发酵凤丹花瓣后,其酚类物质、色差和抗氧化活性的变化。结果表明,植物乳杆菌发酵后的凤丹花瓣总酚和总黄酮含量分别提高了4.95%和12.51%(P0.05);色差值△E变化显著(P0.01);自由基清除活性最高,DPPH自由基清除率增加了11.14%(P0.01),ABTS自由基清除率增加了6.58%(P0.05),还原力增加了16.19%(P0.05)。经保加利亚乳杆菌发酵后,凤丹花瓣的芦丁和槲皮素分别提高了3.16%和0.81%(P0.05)。  相似文献   

8.
添加瑞士乳杆菌(Lactobacillus helveticus,Lh)与嗜热链球菌-德氏乳杆菌保加利亚亚种发酵剂(Streptococcus thermophilus-Lactobacillus bulgaricus,Y)单独或共培发酵,研究Lh不同接种量对牦牛乳的发酵特性、以及发酵牦牛乳的抗氧化能力与肽含量及蛋白水解活力之间的关系。研究发现,Lh与Y混合发酵能使牦牛乳更快凝乳,凝乳时间为2.67 h;在整个冷藏期间,DPPH自由基清除能力和羟自由基清除能力分别与肽含量呈极显著相关(P<0.01),均表现为先上升后下降的趋势,于第14天达到最大值(P<0.05),其中5%Lh-Y组的DPPH自由基清除能力最强,为93.95%,同时该组样品的羟自由基清除能力最强,为81.83%;Fe2+螯合能力表现为下降趋势,分别与肽含量、蛋白水解活力呈极显著相关(P<0.01),5%Lh组样品的螯合能力最强;还原能力表现为上升趋势,与蛋白水解活力呈显著相关(P<0.05),5%Lh-Y组的还原能力最强。结果表明,Lh与Y混合培养能够显著提高发酵牦牛乳样品的抗氧化能力,瑞士乳杆...  相似文献   

9.
为间接评价益生菌发酵乳在人体内的抗氧化活性,分别采用嗜热链球菌(Streptococcus thermophilus)、德氏乳杆菌保加利亚亚种(Lactobacillus delbrueckii subsp. bulgaricus)、动物双歧杆菌(Bifidobacterium)BB12及嗜酸乳杆菌(Lactobacillus acidophilus)制备SL、SL+BB12、SL+LA三种发酵乳,并对其冷藏过程中模拟胃肠液环境下对ABTS、DPPH自由基的清除能力进行了测定。结果表明,三种发酵乳随冷藏时间的延长其抗氧化活性都逐渐降低,添加菌种BB12和LA的发酵乳抗氧化活性下降的幅度小于SL发酵乳,在相同的冷藏时间下模拟胃肠液环境后抗氧化活性都较原发酵乳降低,但添加益生菌BB12和LA发酵乳在模拟胃肠液环境下抗氧化活性高于SL发酵乳,其中BB12高于LA。SL、SL+BB、SL+LA发酵乳冷藏7 d时对ABTS自由基最大清除率分别为46.21%、58.54%、51.99%,对DPPH自由基最大清除率分别为42.17%、53.34%、49.48%。  相似文献   

10.
研究不同乳杆菌对茯苓的发酵性能,特别是药材原有的抗氧化成分和抗氧化能力发酵前后的变化。采用3株乳杆菌,即植物乳杆菌YS-1、植物乳杆菌YS-2和鼠李糖乳杆菌YS-3,对茯苓进行发酵,通过检测茯苓发酵前后的总黄酮、总酚、总三萜3类物质含量及ABTS+自由基、羟自由基、DPPH自由基3种自由基清除率,揭示中药茯苓经过不同乳杆菌发酵后的成分和抗氧化性变化。茯苓经过植物乳杆菌YS-1、植物乳杆菌YS-2发酵后3类物质含量和3种自由基清除率均有升高。经鼠李糖乳杆菌YS-3发酵后总黄酮、总酚含量提高而总三萜含量下降,对自由基清除率无显著变化。经过植物乳杆菌YS-1发酵茯苓的物质成分含量和抗氧化能力总体较高,总黄酮、总酚、总三萜含量分别达到4.2, 6.5和7.9 g/L,相对于发酵前分别提高75%, 55%和44%;羟自由基、ABTS+自由基、DPPH自由基清除率分别达到77%, 75%和88%。试验表明,不同乳杆菌发酵茯苓的性能差异较大,针对茯苓的发酵需要筛选合适的菌种。适宜的乳杆菌发酵茯苓可以显著提高其抗氧化成分含量,同时提高其对自由基清除率。  相似文献   

11.
目的:研究豆渣固态发酵过程中主要营养成分及抗氧化特性的动态变化,为利用豆渣开发功能性食品或配料提供理论参考。方法:分别以米根霉、少孢根霉为发酵菌种对豆渣进行固态发酵,测定发酵过程中还原糖含量、可溶性蛋白含量、纤维素酶活力、糖化酶活力、蛋白酶活力及还原力、2,2’-联氮-二3-乙基-苯并噻唑-6-磺酸二铵盐(2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid),ABTS)自由基清除能力、Fe2+螯合能力为评价指标的抗氧化活性的变化。结果:与未发酵豆渣相比,还原糖含量、可溶性蛋白含量、纤维素酶活力、糖化酶活力、蛋白酶活力均随着发酵时间的延长而增加。豆渣经米根霉发酵24 h,其还原力、ABTS+·清除活性、Fe2+螯合能力分别提高了1.63、1.48、2.82 倍;经少孢根霉发酵24 h,分别提高了1.88、1.63、3.18 倍。结论:用米根霉和少孢根霉发酵豆渣可以提高豆渣的营养成分及抗氧化活性。  相似文献   

12.
本文利用嗜热链球菌,保加利亚乳杆菌及混合菌发酵乳清蛋白蓝莓汁混合物,比较研究了乳清蛋白,蓝莓汁单独发酵和混合发酵初始,24、36、48 h时对发酵产品体外抗氧化特性的影响。结果表明:通过嗜热链球菌发酵乳清蛋白蓝莓混合体系还原能力高于乳清蛋白和蓝莓单独发酵,在发酵24 h时,DPPH自由基清除能力最高达到63.01%。同时,超氧阴离子自由基清除能力与发酵前相比提高54.94%,发酵36 h时的还原能力和羟自由基清除能力最强。采用保加利亚乳杆菌发酵乳清蓝莓体系36 h时ABTS+自由基清除能力最强。采用嗜热链球菌和保加利亚乳杆菌混合菌种发酵蓝莓乳清体系24 h时,抗脂质过氧化能力与发酵前相比提高24.33%。因此,乳酸菌发酵对乳清蛋白和蓝莓汁混合体系的抗氧化能力具有提高和稳定的作用。该研究旨在为开发功能性乳酸菌发酵蓝莓乳清混合产品供理论基础,为蓝莓乳清混合发酵产物在食品及医药领域的应用提供研究依据。  相似文献   

13.
为了考察益生菌发酵玉竹产水溶性多糖的最佳工艺条件并比较发酵与未发酵多糖的抗氧化活性。本文以枯草芽孢杆菌LY-05为发酵菌株,水溶性多糖含量提高率为指标,研究了玉竹添加量、氮源种类、无机盐种类、接种量、培养温度、摇床转速及发酵时间等发酵条件对发酵玉竹产水溶性多糖的影响。在单因实验结果的基础上,选择对多糖含量提高率影响较大的因素,采用响应面试验法对发酵条件进行了优化;并通过检测DPPH自由基清除率、ABTS自由基清除率,OH自由基清除率及总还原能力,评价发酵与未发酵的玉竹多糖抗氧化活性的变化。结果表明:最佳的发酵工艺参数为:玉竹添加量4%,酵母提取粉3%,NaCl 1%,接种量3%,温度35 ℃,转速160 r/min,发酵时间48 h。在此条件下,多糖含量达到7.83 mg/mL,较未发酵(4.56 mg/mL)提高了71.78%。抗氧化试验表明,在一定浓度下,发酵后玉竹多糖的DPPH、ABTS、OH由基清除率及总还原力均有所提高,且呈现多糖浓度依赖性。发酵后多糖POP2对ABTS自由基清除的半抑制浓度(IC50)2.21 mg/mL,对OH自由基清除的IC50为0.49 mg/mL。此项研究表明,利用枯草芽孢杆菌发酵玉竹可以明显提高玉竹多糖的提取效率。通过发酵产生的玉竹多糖,具有更强的抗氧化能力。  相似文献   

14.
本研究使用从红甜菜自然发酵液中分离鉴定出的乳酸肠球菌和植物乳杆菌分别对红甜菜浆和红甜菜片进行发酵,测定了48 h发酵过程中pH、总酸、活菌数、总酚含量、黄酮含量、总抗氧化能力、DPPH·清除能力、ABTS~+·清除能力的变化。结果显示:发酵后的红甜菜浆和红甜菜片的pH显著下降(p0.05),最低达3.95;总酸含量有所增加,最高达16.78 g/kg;使用乳酸肠球菌发酵的红甜菜浆活菌数最高为7.17log(cfu/L);乳酸肠球菌发酵样品中总酚含量提升幅度最大,相对未发酵样品,其发酵浆总酚含量达755.30 mg/L,提高了72.55%;使用植物乳杆菌发酵的红甜菜片中黄酮含量最高为0.92 mg/L,增加了113.95%;植物乳杆菌发酵的红甜菜浆的甜菜红素含量下降最快,相比未发酵液降至6.01 mg/100 mL,下降38.10%,而红甜菜片发酵液中结果相反,甜菜红素含量分别增加128.81%和137.71%;各样品中的甜菜黄素均在发酵前半段显著提高(p0.05);经过发酵后样品的DPPH·清除能力均得到增强,乳酸肠球菌发酵红甜菜片抑制率最高达到55.32%;总抗氧化能力和ABTS~+·清除能力在乳酸肠球菌和植物乳杆菌发酵的红甜菜片样品中分别显著提高,最大值分别为1.14 mM FeSO_4/L和69.69%。这一研究为后续研究、开发红甜菜乳酸发酵制品提供了基础数据与理论依据。  相似文献   

15.
该试验选用鼠李糖乳杆菌、干酪乳杆菌、肠膜明串珠菌及布拉酵母菌液态发酵牡蛎,比较其总抗氧化能力、1,1-二苯基-2-三硝基苯肼(DPPH)自由基、羟自由基及超氧阴离子自由基清除能力和总肽含量。结果表明,4株益生菌发酵牡蛎制品组的总抗氧化能力与空白组相比均显著提升,其中鼠李糖乳杆菌组最高,为(4.04±0.05)U/m L;4组均具有自由基清除能力,其中鼠李糖乳杆菌组的DPPH自由基清除能力最强,羟自由基清除能力与其他组相近,但超氧阴离子自由基清除能力最低;总肽含量由高到低排序的发酵牡蛎制品组为肠膜明串珠菌组>干酪乳杆菌组>鼠李糖乳杆菌组>布拉酵母菌组。初步确定鼠李糖乳杆菌为适用于发酵牡蛎制备活性肽的优良菌株,可为海洋食药资源高值化利用提供可借鉴的技术途径。  相似文献   

16.
目的:研究发酵和加工处理对桑椹抗氧化和降血糖作用的影响。方法:测定桑椹原粉(mulberry powder,MP)、桑椹发酵液(fermented mulberry,FM)、桑椹发酵液冻干粉(freeze-dried fermented mulberry,D(FM))、桑椹发酵液添加黄豆辅料后的冻干粉(freeze-dried fermented mulberry mixed with soybean,D(FM+S))的单糖含量、菌落总数以及2,2’-联氨-双-3-乙基苯并噻唑啉-6-磺酸(2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate),ABTS)阳离子自由基、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、羟自由基清除率和亚铁离子螯合能力、α-葡萄糖苷酶抑制率的变化。结果:桑椹经发酵、冷冻干燥处理后,基本检测不到果糖和葡萄糖;D(FM)中肠膜明串珠菌和酵母菌的存活率分别为54.77%、53.40%,而D(FM+S)中两种菌的存活率都达到90%以上,说明添加黄豆辅料减少了冷冻干燥过程中益生菌的损失。ABTS阳离子自由基清除能力由强到弱依次为D(FM)>D(FM+S)>MP>FM;DPPH、羟自由基清除率以及亚铁离子螯合能力呈现出一致的趋势:D(FM)和D(FM+S)清除能力最强,其次为MP,FM最弱。MP、FM、D(FM)、D(FM+S)对α-葡萄糖苷酶的半抑制浓度分别为0.58、0.53、0.19、0.31 mg /mL,D(FM)和D(FM+S)对α-葡萄糖苷酶的抑制效果优于MP和FM。结论:桑椹发酵和加工处理得到的冻干粉抗氧化能力和降血糖作用都比FM和未发酵的MP强。  相似文献   

17.
张金兰  魏巍  杨云  鲁绯 《中国酿造》2023,42(2):76-82
采用鼠李糖乳杆菌(Lactobacillus rhamnosus)LGG对枸杞果汁进行发酵,评估发酵对枸杞果汁体外抗氧化、抗炎活性的影响。结果表明,与未发酵枸杞果汁相比,发酵枸杞果汁基于1,1-二苯基-2-三硝基苯肼(DPPH)、2,2’-联氮双(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS+)和铁离子还原力(FRAP)方法的抗氧化能力显著提高,分别为17.53 mmol TE/L、42.72 mmol TE/L和21.12 mmol TE/L。发酵前后的枸杞果汁提取物可使H2O2损伤的Caco-2细胞存活率从50.5%分别提高至65.2%、85.0%。通过脂多糖(LPS)作用RAW264.7细胞系构建炎症细胞模型,与未发酵对照组相比,发酵枸杞果汁提取物处理的RAW264.7细胞肿瘤坏死因子-α(TNF-α)、人白细胞介素-6(IL-6)和一氧化氮(NO)释放量显著降低(P<0.05),分别为23.14 ng/mL、450 pg/mL、10.72μmol/L,表明其是通过减少抗炎因子来发挥抗炎作用的。乳酸菌发酵提升了枸杞果汁抗氧化活性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号