首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve and stabilize the magnetic properties of nanocomposite Nd2Fe14B/α-Fe magnetic alloys by a compositional adjustment, small amount of Dy and/or Co was added to Nd9Fe84B7 alloys. DTA analysis on the amorphous of the alloys took place as the soft magnetic phases were crystallized, and then the hard magnetic Nd2Fe14B was precipitated from them. While α-Fe and a metastable 1:7 (TbCu7-type) phase were formed simultaneously in Dy and Co-free alloys, they were crystallized separately at different temperatures after Dy or Co was added. This phase separation occurred more clearly in the Dy-treated alloys and the other soft magnetic phase Fe3B was also stabilized by Dy and/or Co. The 1: 7 phase that was stabilized by Dy and/or Co was not eliminated at 700 ℃, decreasing magnetic properties of the alloys. It was eventually disappeared above 725 ℃, but Fe3B was not eliminated even at 750 ℃ when Dy was added more than 0.5 at% or Co was added more than 2.0 at%. Amount of Nd2Fe14B in the alloys tended to increase as Dy addition increased,whereas Co addition did not lead to any appreciable change in the ratio of α-Fe and Nd2Fe14B. Moreover, Dy addition apparently increased coercivity of an alloy while Co addition had a beneficial effect on remanence. The grains in the Dytreated alloys were usually finer than those in the Co-treated alloys. The grain size of both α-Fe and Nd2Fe14B in the alloys exhibiting mr ≥ 0.72 was in the range of 20 ~ 40 nm or even larger 50 nm, which is larger than the theoretical optimum size ( ~ 10 nm). Typical magnetic properties obtained from a Nd7.5Dy1.5Fe82.5Co1.5B7 alloy annealed for 12 min at 725 ℃were iHc=4.85 kOe, Br= 11.32 kG, (BH)max = 15.73 MGOe, and mr=0.73.  相似文献   

2.
The influence of Zr addition on the microstructure and magnetic properties of nanocomposite Nd10.5Fe78-x Co5ZrxB6.5(x=0-5)alloys was investigated. It was found that the intrinsic coercivity could be significantly improved by the addition of 2% (atom fraction) Zr. The presence of small amount of amorphous phase is responsible for tile low intrinsic coercivity for Zr-free alloy. The small amount addition of Zr may suppress the growth of grains of α-Fe and Nd2Fe14B phases. The more homogeneous microstrueture with an average grain size of 20 nm can be obtained for Nd10.5 Fe76 Co5Zr2B6.5 alloy.  相似文献   

3.
Crystallization and magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets have been investigated by annealing the as-spun ribbons with magnetic field.The crystallization process was accelerated by field annealing.The hysteresis loop became to be fat by magnetic annealing at 645 oC for 4 min,which was 690 oC for ribbons annealing without magnetic field.The relative content of α-Fe phase was increased from the results of XRD.The strength of the magnetic field had no obvious influence on the remanence and coercivity,but modified the squareness of hysteresis loop.  相似文献   

4.
The coercivity enhancement of ball-milled Nd2Fe14B/α-Fe nanocomposite magnets was investigated. It was found that the coercivity could be enhanced through mixing a small amount of Nd powder with as-milled Fe-rich Nd-Fe-B powders. The annealed samples were investigated by means of X-ray diffraction, scanning electron microscopy and magnetic measurement systems. Under annealing, some of Nd powders promoted the formation of hard magnetic phase Nd2Fe14B. On the other hand, a few of Nd would diffuse into the interface of Nd2Fe14B/α-Fe nanocomposite to compensate for the loss of the interfacial magnetic anisotropy. These two features are all beneficial to the coercivity.  相似文献   

5.
A series of nanocomposite thin films, composed of Nd2Fe14B and α-Fe, has been prepared by DC-magnetron sputtering combined ion beam sputtering onto Si (100) substrates. The effects of post annealing on the microstructure and magnetic properties of [NdFeB/α-Fe/NdFeB]-type thin films have been investigated. The X-ray diffraction (XRD) study showed that annealing of the films for 30min at temperatures 550,600,650,700℃ resulted in the appearance of diffraction peaks, characteristic for Nd2Fe14B tetragonal structure, α-Fe and Nd2O3 phases. The investigation using the Vibrating Sample Magnetometer (VSM) with a maximum applied field of 2 T indicated that with the increase of the annealing temperature, the magnetic properties of the multilayer films were improved and reached peak value at 650℃ (Hci=41.72kA·m-1, Mr/Ms=0.4, (BH)max=30.35kJ·m-3), after which the magnetic properties were decreased greatly. Along with the increase of the thickness of α-Fe layer from Tα-Fe16nm, the coercivity Hci, saturation magnetization Ms, and remanence ratio Mr/Ms all declined. As the Atomic Force Microscope (AFM) indicated, after being annealed at 650℃ for 30min, the sample was showed fine surface morphology with grain size 60nm≤dα-Fe≤80nm and 100nm≤dNdFeB≤150nm.  相似文献   

6.
Nd11Fe71Co8V1.5Cr1B7.5 magnet was prepared by melt-spinning and subsequently annealed. The effects of the wheel speed on the magnetic properties and microstructure were studied. The results reveal that fine nanocomposite microstructure consisting of Nd2Fe14B and α-Fe phases can be developed at an optimum wheel speed of about 21 m·s-1. After optimal annealing (640 ℃×4 min), magnetic properties of Br=0.64 T, jHc=903.5 kA·m-1 and (BH)max=71 kJ·m-3 were obtained for the bonded magnets. The addition of Cr element significantly reduces grain size, increasing the intrinsic coercivity and maximum magnetic energy product.  相似文献   

7.
A series of nanocomposite thin films, composed of Nd2Fe14B and α-Fe, has been prepared by DC-magnetron sputtering combined ion beam sputtering onto Si (100) substrates. The effects of post annealing on the microstructure and magnetic properties of [NdFeB/α-Fe/NdFeB]-type thin films have been investigated. The X-ray diffraction (XRD) study showed that annealing of the films for 30min at temperatures 550,600,650,700℃ resulted in the appearance of diffraction peaks, characteristic for Nd2Fe14B tetragonal structure, α-Fe and Nd2O3 phases. The investigation using the Vibrating Sample Magnetometer (VSM) with a maximum applied field of 2 T indicated that with the increase of the annealing temperature, the magnetic properties of the multilayer films were improved and reached peak value at 650℃ (Hci=41.72kA·m-1, Mr/Ms=0.4, (BH)max=30.35kJ·m-3), after which the magnetic properties were decreased greatly. Along with the increase of the thickness of α-Fe layer from Tα-Fe16nm, the coercivity Hci, saturation magnetization Ms, and remanence ratio Mr/Ms all declined. As the Atomic Force Microscope (AFM) indicated, after being annealed at 650℃ for 30min, the sample was showed fine surface morphology with grain size 60nm≤dα-Fe≤80nm and 100nm≤dNdFeB≤150nm.  相似文献   

8.
Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, the liquidus temperatures TL of the alloys decreased from 1498.5 to 1472.5 K; the solidus temperatures TS of them increased from 1353.2 to 1358.3 K; and the nucleation undercooling of the alloy melts cooled at the rate of 40 K/min decreased from 122.8 to 95.9 K, resulting in the solidification structures consisting of Nd_2Fe_(14)B, Fe_3B, α-Fe, Nd1.1Fe4B4 and TiC nanocrystallines. Furthermore, the Nd_9Fe_(85–x)Ti_4C_2B_x(x=11, 13, 15) bulk alloys in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and their solidification characteristics and solidification structures under sub-rapidly cooling rate were investigated. The results showed that partially amorphous structures were obtained in the as-cast bulk alloys and the amount of amorphous decreased with the increase of the B content. By annealing the as-cast bulk alloys at 923 K for 10 min, the nanocomposite microstructures composed with Nd_2Fe_(14)B, Fe_3B and α-Fe nanocrystallines, which showed a single-phase hard magnetic behavior and enhanced magnetic properties, were achieved.  相似文献   

9.
Nanocrystalline Nd8.5Fe7.5Co5Cu1Zr3Nb1B6.5 ribbons were prepared by melt-spun(18m.s^-1) and subsequent heat treatment (670℃/4 min).Excellent magnetic properties of the bonded mangnet were achieved as follows:Br=0.68 T(6.8kGs).JHc=620.3kA.m^-1(7.8kO3).(BH)max=74kJ.m^-3(9.3MGOe)The results of TEM photomicrographs confirm that the appearance of α-Fe Phase is earlier than that of Nd2Fe14B phase during crystallization process.The addition of Cu and Zr elements shows to be advantageous to the improvement of an intrinsic coercivity and squareness of hysteresis loop.as well as energy product.  相似文献   

10.
Effect of Zr addition on microstructure, magnetic properties and thermal stability of Nd12.3Fe81.7B6.0 (x=0-3.0) ribbons melt-spun and annealed was investigated. Magnetic measurement using vibrating sample magnetometer (VSM) revealed that Zr addition was significantly effective in improving the magnetic properties at room temperature. The intrinsic coercivity Hci of the optimally processed rib-boris increased monotonically with increasing Zr content, from 751.7 kA/m for x=0 to 1005.3 kA/m for x=3.0. Unlike the coercivity, the re-manence polarization Jr increased first with Zr addition, from 0.898 T up to 1.041 T at x=1.5, and then decreased with further Zr addition.The maximum energy product (BH)max behaved similarly, increasing from 103.1 KJ/m3 to a maximum of 175.2 kJ/m3 at x=1.5. Microstruc-ture studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM) had shown a significant microstructttre re-finement with Zr addition. The absolute values of temperature coefficients of induction and coercivity were significantly increased with in-creasing Zr content, indicating that Zr was detrimental to thermal stability of the melt-spun Nd2Fe14B-type material.  相似文献   

11.
The influence of Ga addition on the crystallization behavior and the magnetic properties of nanocomposite Nd2Fe14B-based/α-Fe magnets was investigated. It was found that the addition of 0.2% did not change the crystallization temperature of amorphous alloy, but the magnetic properties were improved significantly because of the strong exchange coupling interaction between the hard and soft magnetic phases. The optimum magnetic properties with iHc = 600. 3 kA· m^-1, B r = 0.75 T, and (BH)max = 88.03 kJ· m^-3 were obtained in bonded Nd9.5(FeCoZr)83.8 Ga0.3 B6.5 magnet with 15 m·s^- 1 wheel speed and 670 ℃ annealing treatment. The apparent improvement of magnetic properties originates from the grain refinement calculated using the Scherrer formula from corresponding XRD patterns and the excellent rectangularity of the demagnetization curve.  相似文献   

12.
The effects of Tb addition on the microstructure and magnetic properties of the NdFeB magnets prepared by HD method were investigated by X-ray diffraction(XRD) and BH magnetometers.The results of the microstructure showed that both the Tb-doped and undoped permanent magnets were composed mostly of Tetragonal phase Nd2Fe14B(space group P42/mnm) and a trace amount of Nd-rich phase.Accordingly,addition of Tb led to a decrease of the pole density factor of(004),(006) and(008) crystal plane of the Nd2Fe14B phase calculated by Horta formula,but the coercivity of the magnets increased from 2038 kA/m up to 2302 kA/m as a consequence of Tb addition.The study of the Hc(T)/Ms(T) versus/Ms(T) behavior showed that the nucleation was the dominating mechanism for the magnetization reversal in both sintered magnets,and the microstructural parameters of αk and Neff were obtained also.The Kronmüller-plot showed an increase of the αk responsible for an increase of the coercivity.  相似文献   

13.
Effects of Nb and Zr substitutions on the crystal]ization behaviors and magnetic properties of melt-spun (Nd,Pr)2Fe14B/α-Fe alloys were studied.The results show that for (Nd0.4Pr0.6)8.5Fe85.5B6 ribbons, the metastable (Nd,Pr)3Fe62B14 precipitates after the initial crystallization of α-Fe and decomposes into the final mixture of (Nd,Pr)2Fe14B and α-Fe. For(Nd0.4 Pr0.6)8.5 Fe84.5 Zr0.5 Nb0.5B6 ribbons, however,(Nd, Pr)2Fe14B and α-Fe phases precipitate simultaneously. This indicates that both Nb and Zr dopingcan avoid the formation of metastable phase and!  相似文献   

14.
The influence of Zr addition on magnetic properties and temperature coefficient for nanocomposite Nd10Fe78.5-xCO5ZrxB6.5 (x=0~4) bonded magnets was investigated. It was found that the room-temperature magnetic properties were remarkably improved with Zr addition due to the grain refinement and increasing volume fraction of the hard magnetic phase. The optimal magnetic properties of Jr=0.689T, iHc=769.4kA·m-1 and (BH)max=84kJ·m-3 were obtained for 2.5% Zr addition. The temperature coefficient of remanence (α) increases slightly and the temperature coefficient of coercivity (β) decreases obviously with increasing Zr content for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets.  相似文献   

15.
The influence of Ga addition on the crystallization behavior and the magnetic properties of nanocomposite Nd2Fe14B-based/α-Fe magnets was investigated. It was found that the addition of 0.2% did not change the crystallization temperature of amorphous alloy, but the magnetic properties were improved significantly because of the strong exchange coupling interaction between the hard and soft magnetic phases. The optimum magnetic properties with iHc=600.3 kA·m-1, Br=0.75 T, and (BH)max=88.03 kJ·m-3 were obtained in bonded Nd9.5(FeCoZr)83.8Ga0.2B6.5 magnet with 15 m·s-1 wheel speed and 670 ℃ annealing treatment. The apparent improvement of magnetic properties originates from the grain refinement calculated using the Scherrer formula from corresponding XRD patterns and the excellent rectangularity of the demagnetization curve.  相似文献   

16.
Crystallographic alignment and magnetic anisotropy were studied for NdxFe94-xB6 (x=8,9,10,11) ribbons prepared via melt-spinning. Effect of Nd content and wheel speed on the crystal structure and magnetic properties of the ribbons was investigated. Both the free and wheel side of the ribbons could obtain strong c-axis crystal texture of Nd2Fe14B phase perpendicular to the ribbons surface at low wheel speed,but the texture weakened gradually with the increase of the wheel speed. Increase of Nd content led to better formation of crystal texture in the ribbons,indicating that the α-Fe phase might undermine the formation of crystal texture. Magnetic measurement results showed that the magnetic anisotropy of the ribbons exhibited corresponding behavior with the invariance of the c-axis crystal texture of Nd2Fe14B phase in the ribbons,and the coercivity of the ribbons rose with the increase of both Nd content and wheel speed during melt-spun process.  相似文献   

17.
The effect of Gd content on microstructure and magnetic properties of sintered Nd33.03-xGdxFe65.65B1.32 (x=0-2) was studied in this paper to improve the thermal stability of NdFeB and to reduce the raw material cost. The results showed that better magnet performance could be obtained by adding Gd (0-1.5 wt.%) with partial substitution of Nd in Nd33.03-xGdxFe65.65B1.32. It was also found that the Nd33.03-xGdxFe65.65B1.32 magnets showed the best performance when Gd addition increased to 1.0 wt.%. The temperature coefficient Br (α) could be improved from -0.15%/oC to -0.063%/oC (maximum work temperature 120 oC) and the Curie temperature could be improved from 315 oC to 323 oC because the Gd2Fe14B had positive temperature coefficient Br (α) and higher Curie temperature than that of Nd2Fe14B. The coercivity could be improved from 10.2 to 11.48 kOe and the microstructure was close to ideal microstructure. The magnetic performance decreased sharply by adding Gd (above 2 wt.%) with partial substitution of Nd in Nd33.03-xGdxFe65.65B1.32 because the Gd element concen-trated in the grain boundaries.  相似文献   

18.
Preferred Orientation in Nanocomposite Permanent Magnet Materials   总被引:4,自引:0,他引:4  
Melt-spun (Nd11.4Fe82.9B5.7)0.99M1 ribbons (M = Zr, Nb, Ga, Zr+ Ga, Nb + Ga)were prepared by melt-spinning technique. Ga addition is found to be effective for the orientation of c-axis of Nd2Fe14B grains perpendicular to the ribbon plane. Better magnetic properties can be achieved by adding both the two kinds of elements Zr + Ga, Nb + Ga, and it is found that the preferred orientation is further improved. The alignment degree changes with ribbon thickness and is highest when ribbon thickness is 120 μm. Heat treatment can improve the texture degree, but lead to coarser grains. Cryogenic treatment is first applied for the treatment of nanocomposite Nd2Fe14B/α-Fe melt-spun ribbons. The effects on magnetic properties and texture degree of nanocomposite magnets after cryogenic treatment were studied. The result shows that cryogenic treatment is beneficial to the enhancement of texture degree of melt-spun ribbon and the grain size has no obvious change.  相似文献   

19.
High-performance α-Fe/Pr2Fe14B-type nanocomposite magnets based on the compositions of Pr8Fe86B6 microalloyed with Co, Nb and C were fabricated by direct melt spinning. The coercivity was greatly improved from 5.5 kOe for the Pr8Fe86B6 ribbons to 7.4 kOe for the Pr8Fe85NbB5C ribbons. The balanced high coercivity and remanence were obtained in Pr8Fe75Co10NbB5C ribbons due to the Co substitution for Fe, which led to the significant improvement of magnetic properties in these ribbons. A remanence ratio of 0.82, a coercive field of 6.6 kOe and a maximum energy product of 26.2 MGOe in melt-spun Pr8Fe75Co10NbB5C ribbons were obtained at room temperature.  相似文献   

20.
The influence of Ce-Co alloy addition and sintering holding time on permanent magnetic properties and micro structure of nanocrystalline Nd-Fe-B bulk alloy were investigated.The coercivity of Nd-Fe-B bulk alloy can be enhanced greatly by more than 100% after adding Ce-Co powders.However,when the concentration of Ce-Co is up to 30 wt%,the density of the magnet can reach the maximum value of 7.58 g/cm~3,but the coercivity does not increase significantly.On the other hand,with the increase of holding time to 10 min,the density and coercivity of magnets increase gradually,reaching up to 7.55 g/cm~3 and 1134.3 kA/m,respectively.After the addition of Ce-Co alloy,Ce-Co may easily diffuse into the Nd-Fe-B matrix during hot-pressing and under the high pressure and temperature,thus increasing the content of grain boundary phase and the pinning effect of grain boundary,which leads to the increase of coercivity.The extension of the hot-pressing holding time may be more conducive to the diffusion of CeCo into the Nd-Fe-B matrix.In addition,the effect of Ce-Co addition on the magnetic properties of Nd-FeB with different content of rare earth was also studied.The addition of Ce-Co can effectively increase the coercivity of nanocomposite Nd_2 Fe_(14)B/α-Fe magnets.The addition of Nb to the parent alloy can further improve the coercivity.For Nd_(11)Fe_(81.5)Nb_1 Ga_(0.5)B_6 alloy with 10 wt% Ce-Co addition,the coercivity can increase from 740.28 to 1098.48 kA/m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号