首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this paper, a honeycomb Si3N4 ceramic was fabricated by 3D printing with a well-preserved structure. The effects of Si3N4 content on the rheological properties of Si3N4/sol–silica ink and the printing resolution of products were investigated. The microstructure, phase composition, liner shrinkage rate, and fracture behavior of printed samples before and after sintering were systematically characterized in detail. The results showed that the modified inks had the optimized rheological properties, and the stress–shear rate curves corresponding to each slurry could be well described by Bingham and Herschel–Bulkley fluid models. The corresponding slump rates of the printed samples with different Si3N4 to sol–silica mass ratios were all lower than 4%, and the linear shrinkage rate of all of the samples after sintering was below 20%. The fracture behavior under compressive loading of the honeycomb Si3N4 ceramics tended to be non-catastrophic fractures both before and after sintering. The compressive strengths of all of the printed samples decreased with the increase of the Si3N4 content, and the highest compressive strength of the honeycomb ceramics could reach 131.2 MPa after sintering at 1600°C, which was about 366.9% higher than that of the samples in green state prior to the sintering.  相似文献   

2.
《Ceramics International》2023,49(19):31228-31235
Porous Si3N4 ceramics are highly regarded as ideal materials for radomes due to their unique characteristics. However, the slurry used for the preparation of porous Si3N4 ceramics suffers from a low cure depth, making it challenging to fabricate ceramic components using DLP technology. In this study, porous Si3N4 ceramics were prepared by combining DLP technology with pore-forming agent method. The addition of polymethyl methacrylate (PMMA) powders with lower refractive index than that of Si3N4 powders can improve the penetration depth of ultraviolet light in the Si3N4 slurry. A systematic study was conducted to investigate the influence of the addition of PMMA powders on the properties of Si3N4 slurries and porous Si3N4 ceramics. When PMMA powders were added at 10 wt%, the slurry with a lowest viscosity of 0.13 Pa s (the shear rate is 30 s−1) and cure depth of 40.0 μm (the exposure energy is 600 mJ/cm2) was obtained. With the increase of PMMA content, porous Si3N4 ceramics experienced a gradual decrease in both the flexural strength and bulk density, while the porosity increased from 14.41% to 27.62%. Specifically, when 20 wt% PMMA was added, the resulting porous Si3N4 ceramics had a lowest bulk density (2.41 g/cm3), a maximum porosity (27.62%), and a flexural strength (435.87 MPa). The study is of great significance in establishing an experimental foundation for fabricating porous Si3N4 ceramics by using DLP technology.  相似文献   

3.
To date, obtaining the high-solid-loading Al2O3 slurry and overcoming the trade-off between high solid loading and printing accuracy and strength of printed green bodies to achieve high-performance and precision Al2O3 ceramic parts by DLP 3D printing remain challenging. In this study, an Al2O3 slurry with high solid loading of 60 vol% was developed through dispersant optimisation for top-down DLP 3D printing. Graphene was innovatively introduced during slurry fabrication to decouple the printing accuracy and strength of green bodies from such high solid loading. Simultaneously, graphene addition could considerably reduce slurry fluidity, thereby facilitating its coordination with top-down DLP. With 0.07 wt% graphene addition, the dimension deviations of printed green bodies improved from 90 to 880 µm to ≤ 70 µm, and the bending strength increased by 17.75%. High-performance and precise Al2O3 ceramic components with low sintering shrinkages were prepared. The density and microhardness were 99.7% and 18.61 GPa, respectively.  相似文献   

4.
《Ceramics International》2023,49(16):27040-27049
Porous Si3N4 ceramics with high strength and high transmittance have been widely used in the field of defense and military. Additive manufacturing (AM) technology is one of the effective means to fabricate porous Si3N4 ceramics. Nevertheless, it is difficult to prepare porous Si3N4 ceramics by using digital light processing (DLP) because of the large refractive index difference between Si3N4 powders and photosensitive resin. In this study, the effects of the amount of polystyrene (PS) powders on the properties of Si3N4 ceramic slurries and sintered ceramics were systematically discussed. The addition of PS reduced the overall refractive index of powders and increased the average particle size of powders, thus improving the cure depth of Si3N4 ceramic slurries from 11.0 ± 2.0 μm to 55.7 ± 1.8 μm. With the increase of PS content, the shrinkage and porosity of Si3N4 ceramics gradually increased, and the bulk density and flexural strength showed the opposite trend. The slurry with low viscosity (2.38 Pa٠s at a shear rate of 30 s−1) and high cure depth (51.2 ± 4.6 μm) was obtained when the content of PS was 15 wt%, which met the thickness requirements for printing. The total porosity of Si3N4 ceramics reached the maximum values at 28.21 ± 2.58%. The addition of PS solved the problem of low cure depth of slurries, and PS as a pore-forming agent could help Si3N4 ceramics form porous structure. This research provides valuable insights into the fabrication of non-oxide ceramics with high refractive index using DLP technology.  相似文献   

5.
《Ceramics International》2023,49(18):29699-29708
Si3N4-SiO2 ceramics are considered as the preferred high-performance wave-transmitting material in the aerospace field. However, traditional fabrication methods for Si3N4-SiO2 ceramics have the disadvantages of high cost and complicated fabrication process. In this paper, Si3N4-SiO2 ceramics with excellent mechanical and dielectric properties were fabricated by digital light processing-based 3D printing combined with oxidation sintering. Firstly, the curing thickness and viscosity of slurries with different solid loadings for vat photopolymerization-based 3D printing were studied. Then, the effects of the sintering temperature on the linear shrinkage, phase composition, microstructure, flexural strength, and dielectric properties of Si3N4-SiO2 ceramics, and the influences of solid loading on them were explored. The curing thickness and viscosity of the slurry with a solid loading of 55 vol% were 30 μm and ∼1.5 Pa‧s, respectively. The open porosity and the flexural strength of Si3N4-SiO2 ceramic with a solid loading of 55 vol% were 4.3 ± 0.61% and 76 ± 5.6 MPa, respectively. In the electromagnetic wave band of 8–18 GHz, the dielectric constant of Si3N4-SiO2 ceramics was within the range of less than 4, and the dielectric loss remained below 0.09. The method of digital light processing-based 3D printing combined with oxidation sintering can be further extended in the preparation of Si3N4-based structure-function integrated ceramics.  相似文献   

6.
This paper focuses on investigating the technical potential for fabricating porous ceramic bioscaffolds for the repair of osseous defects from trauma or disease by inverse replication of three–dimensional (3–D) printed polymer template. Si3N4 ceramics with pore structure comprising orderly–interconnected big pore channels and well–distributed small pores are successfully fabricated by a technique combining 3–D printing, vacuum suction filtration and oxidation sintering. The Si3N4 ceramics fabricated from the Si3N4 powder with addition of 10?wt% talcum by sintering at 1250?°C for 2?h have little deformation, uniform microstructure, low linear shrinkage of 4.1%, high open porosity of 58.2%, relatively high compression strength of 6.4?MPa, orderly–interconnected big pore channels and well–distributed small pores, which are promising bioscaffold in the field of bone tissue engineering.  相似文献   

7.
Direct ink writing (DIW) and low-temperature sintering methods were applied to prepare Si2N2O-Si3N4 ceramics for radome materials. Lattices of Si-SiO2 green body were printed by DIW with 78 wt % solid portion of water-based Si-SiO2 slurry, in which silicon particles and silica fume were used as the solid portion and Methylcellulose (HPMC) was used as the dispersant. Effects of HPMC addition on stability and silica fume content on rheological properties of the slurry were studied, respectively. The pseudoplastic mechanism of the slurry was analyzed. The Si-SiO2 green bodies were sintered at 1250 °C–1400 °C in nitrogen. The effect of temperature on phase composition, microstructure, mechanical and dielectric properties of samples was investigated. With the HPMC addition of 0.12 wt% and the silica fume proportion of 30 wt% in solid portion, a stable and pseudoplastic slurry with the yield stress of 110.9 Pa was obtained, which is suitable for DIW. With the decrease of initial holding temperature, more N2 enters the sample and reacts with silicon and silica fume, promoting the generation of Si2N2O and Si3N4. The optimal condition yields Si2N2O-Si3N4 ceramics with apparent porosity of 42.73%, compressive strength of 24.7 MPa, dielectric constant of 4.89 and loss tangent of 0.0054. It is found that columnar Si3N4 comes from a direct reaction between silicon and N2, and fibrous Si2N2O is mainly generated by the reaction between silicon, SiO(g), and N2 through the chemical vapor deposition mechanism. Good dielectric properties are achieved due to high porosity, high proportion of Si2N2O phase and no residual silicon.  相似文献   

8.
In this study, Al2O3 ceramics parts were printed by inkjet printing technology with different printed paths distributions, such as the spiral printed path, round trip straight printed path and ladder lap printed path. The influences of inkjet printed paths on sintering performance and thermal shock resistance of the Al2O3 green bodies were investigated. The sintering performance of the green sample with the ladder lap printed path is the highest among the three samples. Sintered at 1550?℃, its bulk density and porosity reached 3.73?g/cm3 and 10.80%, respectively. In addition, the thermal shock resistance of the sample with the step print path reached 11 times. The results suggest that the optimization of the printed path provides an effective way to print 3D ceramics with good performances through 3D inkjet-printing technology.  相似文献   

9.
《Ceramics International》2020,46(2):2063-2071
Photocurable gray-colored Si3N4 ceramic slurry with high solid loading, suitable viscosity and high curing depth is critical to fabricate dense ceramic parts with complex shape and high surface precision by stereolithography technology. In the present study, Si3N4 ceramic slurry with suitable viscosity, high solid loading (45 vol %) and curing depth of 50 μm was prepared successfully when surface modifier KH560 (1 wt%) and dispersant Darvan (1 wt%) were used. The slurry exhibits the shear thinning behavior. Based on the Beer-Lambert formula, Dp (the attenuation length) and Ec (the critical energy dose) of Si3N4 ceramic slurry with solid loading of 45 vol % were derived as 0.032 mm and 0.177 mJ/mm2, respectively. Si3N4 ceramic green parts with complex shape and high surface precision were successfully fabricated by stereolithography technology. After optimizing the debinding and sintering process for green parts, dense Si3N4 ceramics with 3.28 g/cm3 sintering density were fabricated. The microhardness and fracture toughness of as-sintered Si3N4 ceramics are ~14.63 GPa and ~5.82 MPa m1/2, respectively, which are comparable to those of the samples by traditional dry-pressed and pressureless sintering technology. These results show that ceramic stereolithography technology could be promising to fabricate high performance ceramics, especially for gray-colored monolithic Si3N4 ceramics.  相似文献   

10.
In this paper, novel porous Si3N4 ceramics were prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent. The effect of Si3N4 poly-hollow microsphere content on the phase composition, microstructure, shrinkage, porosity and mechanical properties of the prepared porous Si3N4 ceramics were investigated. It is found that there is only β-Si3N4 phase in all the prepared porous Si3N4 ceramics. Meanwhile, the SEM results show that the pores in the porous Si3N4 ceramics distribute uniformly, the added Si3N4 poly-hollow microspheres and the basal body contact closely. With the increase of Si3N4 poly-hollow microsphere content, the shrinkage of the porous Si3N4 ceramics decreases gradually, and the porosity of the porous Si3N4 ceramics decreases firstly and then increases. Furthermore, the flexural strength and fracture toughness of the porous Si3N4 ceramics decrease with the increase of the Si3N4 poly-hollow microsphere content.  相似文献   

11.
《Ceramics International》2023,49(20):33004-33010
The sintering aids play an important role in affecting the properties of porous Si3N4 ceramics. However, there are few researches on the properties of porous Si3N4 ceramics fabricated by digital light processing (DLP) with different ratios of sintering aids. In this paper, porous Si3N4 ceramics with different ratios of sintering aids (Y2O3-Al2O3) were formed by DLP technology. The influence of Y2O3-Al2O3 ratios on the properties of Si3N4 slurry and porous ceramic was studied systematically. The ratio of Y2O3-Al2O3 had little effect on the rheology and cure depth of Si3N4 slurry due to the low addition of sintering aids. The increase of Y2O3-Al2O3 ratio promoted the anisotropic growth of β-Si3N4. When the ratio of Y2O3-Al2O3 was 9:1, the aspect ratio of β grains reached the maximum. As the ratio of Y2O3-Al2O3 powders increased, the linear shrinkage of porous Si3N4 ceramics showed an increasing and then decreasing trend in three directions. When the Y2O3-Al2O3 ratio was 3:7, the shrinkage rate in the length, width and height direction reached the maximum (27.03%, 30.27% and 40.02%, respectively). The bulk density and flexural strength exhibited an initial increase followed by a subsequent decrease, while the porosity showed the opposite trend. When the Y2O3-Al2O3 ratio was 9:1, the porosity reached a maximum of 28.1%. And the bulk density and flexural strength were 2.42 g/cm3 and 421.58 MPa, respectively. This study is of great significance as it lays the experimental foundation in the performance control of porous Si3N4 ceramics fabricated by DLP.  相似文献   

12.
Wave-transmitting materials are a kind of multi-functional materials that protect the normal operation of communication and guidance systems of spacecraft in harsh environments. In this paper, we fabricate a broadband microwave transparent Si3N4-SiO2 composite ceramic with excellent performance through digital light processing (DLP) 3D printing technology. The influences of sintering temperature on the weight increase rate, density, dimensional shrinkage, phase composition, microstructure, bending strength and dielectric properties of Si3N4-SiO2 ceramic were all systematically studied. The strength of Si3N4-SiO2 ceramic sintered at 1350 ℃ was 77 ± 5 MPa. The relative permittivity of the ceramic is within the range of less than 4, and the loss tangent can be below 0.003. The 3D printed Si3N4-SiO2 ceramic material exhibited excellent wave-transparent performance.  相似文献   

13.
Porous silicon nitride ceramics with various porosities were fabricated by liquid phase sintering of mixtures containing fibrous and equiaxed α‐Si3N4 powder with a various content ratios. The effects of the contents of the fibrous α‐Si3N4 powder (0%–100%) on the microstructure and mechanical properties of porous Si3N4 ceramics were studied. As the increase of the fibrous α‐Si3N4 powder content, both the density of green bodies and the linear shrinkage decreased, resulting in increased porosity due to the inhibited densification by the fibrous Si3N4 particle. XRD analysis proved the complete formation of single β‐Si3N4 phase. SEM analysis revealed that the microstructure of the low content of fibrous α‐Si3N4 porous ceramics was almost composed of fine elongated β‐Si3N4 grains with high aspect ratio while numerous coarse elongated β‐Si3N4 grains with low aspect ratio surrounding fine grains were formed as the content of the fibrous α‐Si3N4 powder increased. With the increase in content of the fibrous α‐Si3N4 powder from 0% to 100%, the porosity changed from 47.8% to 56.6%, and the flexural strength decreased from 146 to 62 MPa correspondingly, indicating a flexural adjustment of the porosity and mechanical properties.  相似文献   

14.
Porous Si3N4/SiC ceramics with high porosity were prepared via nitridation of Si powder, using SiC as the second phase and Y2O3 as sintering additive. With increasing SiC addition, porous Si3N4/SiC ceramics showed high porosity, low flexural strength, and decreased grain size. However, the sample with 20wt% SiC addition showed highest flexural strength and lowest porosity. Porous Si3N4/SiC ceramics with a porosity of 36–45% and a flexural strength of 107‐46MPa were obtained. The linear shrinkage of all porous Si3N4/SiC ceramics is below 0.42%. This study reveals that the nitridation route is a promising way to prepare porous Si3N4/SiC ceramics with favorable flexural strength, high porosity, and low linear shrinkage.  相似文献   

15.
In this paper, high thermal conductivity Si3N4 ceramics were successfully fabricated through exploring and optimizing the tape casting process. The impact of various organic additives on the rheological characteristics of Si3N4 slurry was explored, and the pore size distribution and microstructure of the green tapes at different solid loadings were investigated, as well as the microstructure of Si3N4 ceramics. Green tapes with a narrow pore size distribution, a small average pore size, and a high density of 1.88 g cm−3 were prepared by the investigation and optimization of the Si3N4 slurry formulation. After gas pressure sintering, Si3N4 ceramics with a density of 3.23 g cm−3, dimensions of 78 mm × 78 mm, and a thickness of 0.55 mm were obtained. The microstructure of the Si3N4 ceramics showed a bimodal distribution and a low content of glassy phases. The thermal conductivity of the Si3N4 ceramics was 100.5 W m−1 K−1, the flexural strength was 735 ± 24 MPa, and the fracture toughness was 7.17 MPa m1/2.  相似文献   

16.
Porous Si3N4 ceramics with open, closed pores and nest-like structures were prepared by direct foaming method, and the stability of bubbles and the microstructures of sintered Si3N4 foam ceramics were investigated. The bubbles produced by short-chain amphiphiles have higher stability as compared with that produced by long-chain surfactants. Si3N4 ceramic foams using short-chain amphiphiles are particle-stabilized one, porous Si3N4 ceramics with open and closed pores can be easily prepared with this method, and the nest-like microstructure in Si3N4 foam ceramics is achieved at high gas-pressure sintering conditions. The decrease of flexural strength due to the increase of porosity can be weakened by decreasing pore size.  相似文献   

17.
Digital light processing 3D printing can be applied to fabricate complex silicon nitride (Si3N4) components. However, because of the surface hydroxyl groups and large refractive index, it is still a foremost challenge to realize a stable photosensitive Si3N4 slurry with combined benefits of low viscosity and large curing depth. In this study, we propose a new formulation strategy to prepare Si3N4 slurry. Starting from the optimization of monomer ratio, we have systematically optimized powder particle size, dispersant and photoinitiator on the rheological properties and curing properties of Si3N4 slurry. Specifically, we have fabricated a stable photosensitive Si3N4 slurry (48 vol%) with a viscosity of 2.09 Pa s (30 s?1), a critical curing energy of 126.09 mJ/cm2 and a maximum curing depth of 80 µm. Finally, based on this optimized slurry, we have successfully obtained complex Si3N4 green body with no defect, which demonstrates great potential to fabricate arbitrary complex ceramic components for various applications.  相似文献   

18.
《Ceramics International》2022,48(20):29900-29906
Porous Si3N4 ceramics are widely used in the aerospace field due to its lightweight, high-strength, and high wave transmission. Traditional manufacturing methods are difficult to fabricate complex structural and functional ceramic parts. In this paper, selective laser sintering (SLS) technology was applied to prepare porous Si3N4 ceramics using AlN as an inorganic binder. And the effects of AlN content on the properties of the obtained ceramic samples were explored. As the AlN content increased, nano-Al2O3 and nano-SiO2 formed the eutectic liquid phase, enhancing the sintering densification and phase transformation of Si3N4 poly-hollow microspheres (PHMs). The island-like partial densification structures in Si3N4 green bodies increased. During the high-temperature sintering, the eutectic liquid phase partially transformed into the mullite phase or reacted with AlN and Si3N4 to form the Sialon phase. With the increase of AlN content, the fracture mode of Si3N4 ceramics changed from fracturing along PHMs to fracturing across PHMs. The bonding depth between PHMs increased and the connection between the grains was tighter, so the Si3N4 ceramics became denser. With the increase of AlN addition, the total porosity of the porous Si3N4 ceramics tended to decrease and the flexural strength gradually increased. When AlN content was 20 wt%, the total porosity and the flexural strength were 33.6% and 23.9 MPa, respectively. The addition of AlN inorganic binder was carried out to develop a novel way to prepare high-performance porous Si3N4 ceramics by SLS.  相似文献   

19.
QPAC40 (polypropylene carbonate), with a little decomposition residue, is commonly used as a binder in aluminum nitride (AlN) tape casting. In this paper, we tried to explore its application in silicon nitride (Si3N4) tape casting. By studying the influence of dispersant, binder, plasticizer/binder ratio, and solid loading on slurry and green tape properties, the optimum formulation of the tape casting of Si3N4 slurry was determined, and the green tape with a uniform structure and relative density up to 63.16% was prepared. Si3N4 ceramics were obtained by debinding at 600°C for 1 h in vacuum and gas-pressure sintering at 1830°C for 2 h in N2. The thermal conductivity and flexural strength of Si3N4 ceramics were 56.28 ± 1.21 W/(m·K) and 1130.67 ± 23.58 MPa, respectively. These results indicated that QPAC40 can be used to prepare Si3N4 sheets through tape casting.  相似文献   

20.
Digital light processing (DLP) 3D printing has been utilized to fabricate controlled porous β-tricalcium phosphate (β-TCP) scaffolds, which promote cell adhesion and angiogenesis during bone regeneration. However, the current limitation of DLP 3D printing for the fabrication of β-TCP scaffold is how to prepare a low viscosity ceramic slurry and remove the toxicity of residual non-polymerized slurry. The present study has developed a low viscosity ceramic slurry system by mixing β-TCP with photosensitive acrylate resin, and the viscosity of slurry is about 3 Pa s and the solid content of β-TCP can be as high as 60 wt%. After optimizing the ratio of slurry, printing, degreasing and sintering processes, the maximum compressive strength of the DLP printed scaffolds reaches up to 9.89 MPa, while the porosity keeps ca. 40%. According to the proliferation of cells, it confirms the preserved biocompatibility of DLP-fabricated β-TCP scaffolds. These porous scaffolds made by DLP 3D printing technology is of great significance for bone regeneration, and will also help to expand the application of DLP technology in biomedical field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号