首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于排放测量数据,采用量化共扼梯度法(SCG)建立了煤层气发动机的BP神经网络排放预测模型,检验结果证实了模型的准确性。为全面了解煤层气发动机的排放特性和制定合理的排放控制策略,借助于该模型,通过模拟研究对发动机的排放性能进行了预测,并分析了预测结果。  相似文献   

2.
根据化学反应动力学原理,建立了火花点火武变组分煤层气发动机CO的生成模型,该模型由碳氢燃料高温氧化生成CO以及CO在火焰中及火焰后氧化两部分组成。以MATLAB程序设计语言为应用平台,对CO的瞬时排放量进行了模拟计算,得到了发动机缸内CO的变化规律。同时,计算和分析了煤层气组分变化对CO排放的影响,并与实验结果进行了比较。研究结果证实.所建立的CO排放模型是合理的。理论和试验结果表明,提高煤层气中的甲烷浓度和发动机的负荷有利于降低发动机的CO排放量。  相似文献   

3.
以燃烧反应化学动力学程序 SENKIN为基础 ,建立了预测发动机排放的计算模型 ,并针对自由活塞式发动机的特点进行了修正 ,并对修正后的模型进行了实验验证。利用该模型对自由活塞式发动机的排放进行了数值计算。计算结果揭示了该种发动机排放物的生成特点以及发动机转速、混合气燃空比对排放产物的影响规律  相似文献   

4.
分别以柴油的十六烷值、十六烷值和十六烷改进剂、十六烷值和柴油的含氮量作为输入量,以发动机排放的NOx作为输出量,建立了发动机的NOx排放的线性神经网络模型,利用该模型预测了发动机排放的NOx的值,分析了十六烷改进剂和柴油的含氮量对发动机的NOx排放的影响,得到了较为满意的结果。  相似文献   

5.
自由活塞式发动机NOx排放的数值计算研究   总被引:1,自引:0,他引:1  
以燃烧反应化学动力学程序SENKIN为基础,建立了预测发动机排放的计算模型,并针对自由活塞式发动机的特点进行了修正,并对修正后的模型进行了实验验证。利用该模型对自由活塞式发动机的排放进行了数值计算。计算结果揭示了该种发动机排放物的生成特点以及发动机转速、混合气燃空比对排放产物的影响规律。  相似文献   

6.
贾明  解茂昭  曾文 《内燃机学报》2007,25(2):105-112
多区模型作为现阶段均质压燃(HCCI)发动机高效准确的数值模型得到了世界范围的广泛关注。讨论了不同子模型对多区模型预测性能的影响。以实验为基准,比较了多区模型中区间划分、缸壁传热模型、区间热量交换模型、区间质量交换模型和边界层模型对HCCI发动机燃烧和排放模拟结果的影响,全部计算均基于异辛烷的详细化学动力学机理。结果表明:在区间划分时对温度较低的区域细化可以提高排放的计算效果,而对高温区域的细化对计算结果影响不大;改进的Woschni传热模型更准确地模拟了缸壁的传热过程;区间的质量和热量交换对计算结果影响显著,特别是质量交换模型的加入使CO排放的预测与实验值更为接近;而边界层厚度模型对整个结果影响不大。  相似文献   

7.
发动机燃用煤层气燃料燃烧和排放性能试验研究   总被引:1,自引:0,他引:1  
在一台单缸火花点火发动机上开展了燃用不同组分配比的煤层气燃料燃烧和排放特性的试验研究,分析了发动机燃用不同组分的煤层气在不同负荷下的缸压、放热率、火焰发展期、主燃烧期及其排放性能.研究结果表明:随着煤层气中氮气体积分数的增加,最高缸内压力和压力升高率降低,燃烧放热率峰值下降,火焰发展期变长,放热率曲线型心对应的曲轴转角偏离上止点;发动机HC和CO排放浓度增大,而NOx排放大幅度下降.  相似文献   

8.
火花点火式变组分煤层气发动机的工作稳定性和排放特性   总被引:9,自引:0,他引:9  
介绍了火花点火式变组分煤层气发动机的主要设计过程。通过发动机台架试验,在不同点火提前角、不同甲烷浓度和不同压缩比时对该发动机的起动、怠速稳定性和排放特性进行了分析。结果表明,变组分煤层气发动机起动、怠速稳定,带负荷工作可靠。通过控制合适的空燃比,可以适应甲烷浓度大范围变动的煤层气燃烧。未燃HC和CO排放量随负荷、甲烷浓度增加而降低;NOx排放量随负荷、甲烷浓度增加而增加。  相似文献   

9.
《内燃机》2016,(2)
利用GT-SUITE软件建立具有快速运算功能的天然气发动机湍流火焰预测燃烧模型,结合试验数据验证了模型的计算精度,基于该模型对ETC循环排放预测、DOC匹配分析及WHTC冷循环标定策略优化进行了研究。研究结果表明,GTSUITE对天然气发动机瞬态排放的预测精度在20%以内,同时可为发动机后处理匹配及标定策略优化提供依据。  相似文献   

10.
B231发动机性能优化及循环模拟计算   总被引:10,自引:1,他引:10  
以改善发动机的燃油经济性为目的,采用发动机台架试验和模拟计算的方法对B231发动机性能进行研究开发。首先利用AVL的BOOST软件对发动机进行建模,通过试验确定边界条件,与试验结果比较表明了该模型有较高的模拟精度。利用所建模型预测喷油时间对发动机性能的影响,筛选出最佳方案,并通过试验验证。在满足欧-Ⅱ排放法规的前提下,使B231发动机在标定点油耗率降低5%。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

19.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

20.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号