首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate ester compounds display good flame retardancy effect in epoxy resin systems. In this paper, several novel phosphate esters, used as curing agents for epoxy resins, were synthesized based on P2O5, phosphoric acid, and different types of alcohol. The structures of phosphate esters were characterized by 31P nuclear magnetic resonance (31P NMR). Then, a series of flame retardant epoxy composites were prepared by curing the epoxy resins (E-44) with the phosphate esters. The flame retardancy and thermal degradation behaviors of flame retardant epoxy composites were investigated by cone calorimeter test (CCT) and thermogravimetric analysis (TGA), respectively. The results of CCT indicated that phosphate esters can significantly decrease heat release rate, total heat release (THR), and smoke production rate. The sample cured by butyl phosphate ester from phosphorus pentoxide, phosphoric acid and butanol showed the best flame retardant performance among all samples. The TGA results showed that phosphate esters could enhance char residues of flame retardant epoxy composites when compared with those of a composite using T31 as a curing agent at high temperature. It may be concluded that good flame retardant properties of flame retardant epoxy composites are related to the formation of a protective phosphorus-rich char layer. These phosphate esters have a good future on flame retardant epoxy composites.  相似文献   

2.
The action of metals on the flame retardancy of thermoplastic has aroused much interest in recent years. However, their action on thermosets is still not clear. In this work, metal‐phosphorus hybridized nanomaterials with different metal centers were prepared via hydrothermal reaction between metal hydroxide/salts with phosphinic/phosphonic acids. The loading of these hybrids in epoxy (EP) resins resulted in great change on fire resistance. Thermogravimetric analysis, solid and gas phase analysis results indicated that the flame retardant action of the hybrids perhaps didn't take place following the conventional models in condensed and gas phase. It was found that the flame retardancy was greatly correlated with the action of metal centers with EP resin, which resulted in the formation of metal‐oxygen bonds and the delayed release of flammable compounds from EP resin. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45445.  相似文献   

3.
The ? P(O)‐H in 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was used as an active group to react with the carbonyl group in 4,4′‐dihydroxybenzophenone (DHBP) to result a novel phosphorous‐containing biphenol compound (DOPO‐2OH). Phosphorous‐containing epoxy resins were therefore obtained from reacting DOPO‐2OH with epichlorohydrin or with diglycidylether bisphenol A. The synthesized compounds were characterized with FTIR, 1H and 31P NMR, elemental analysis, and epoxide equivalent weight titration to demonstrate the their chemical structures. Cured epoxy resins were prepared via thermal curing the epoxy resins with various curing agents. Thermal analysis results (differential scanning calorimetry and thermogravimetric analysis) revealed that these cured epoxy resins exhibited high glass transition temperatures and high thermal stability. High char yields at 700°C and high LOI (limited oxygen index) values were also found for the cured epoxy resins to imply that the resins were possessing high flame retardancy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1697–1701, 2002  相似文献   

4.
Epoxy composites containing phosphorus and/or silicon were prepared using polyphenylmethoxysilicone (PPMS) and microencapsulated ammonium polyphosphate (MFAPP) as modifiers. Siliconized epoxy copolymer (EPMS) was obtained via the polycondensation of PPMS and diglycidyl ethers of bisphenol A (DGEBA) type epoxy resin. Then MFAPP was added into EPMS or DGEBA based hybrids respectively to improve their flame retardancy further. Thermal and flame retardant properties of EPMS/MFAPP and DGEBA/MFAPP composites were evaluated by Limited Oxygen index (LOI), UL-94 test and thermogravimetric analysis (TGA). The higher LOI value and UL-94 rating confirmed that MFAPP was an effective flame retardant in DGEBA compared with EPMS. A remarkable synergistic effect of phosphorus and silicon on flame retardation of EPMS/MFAPP was not observed. The reason was that the flame retardancy of epoxy composites containing phosphorus was based on solid phase. FTIR spectra of the char residue showed that when MFAPP was added, without sufficient O-H groups in EPMS/MFAPP, an effective insulative layer which protects underlying materials can’t form during combustion.  相似文献   

5.
Through the electrophilic addition reaction of ? P(O)? H and C?C, a series of novel phosphorus‐containing phenolic resins bearing maleimide (P‐PMFs) were synthesized and used as curing agent for preparing high performance and flame retardancy epoxy resins. The structure of the resin was confirmed with FTIR and elemental analysis. Thermal properties and thermal degradation behaviors of the thermosetted resin was investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The epoxy resins exhibited high glass transition temperature (143–156°C), goof thermal stability (>330°C) and retardation on thermal degradation rates. High char yields (700°C, 52.9%) and high limited oxygen indices (30.6–34.8) were observed, indicating the resins' good flame retardance for the P‐PMFs/CNE cured resins. The developed resin may be used potentially as environmentally preferable products in electronic fields. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3813–3817, 2007  相似文献   

6.
A comparative evaluation of systematically tailored chemical structures of various phosphorus‐containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot‐wet properties of a cured bifunctional bisphenol‐A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber‐reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus‐modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate‐based hardener. The overall mechanical performance of the materials cured with the phosphorus‐containing hardeners is comparable to that of a 4,4′‐DDS‐cured reference system. While the various phosphorus‐containing hardeners in general provide the epoxy‐based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber‐reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus‐containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
贾修伟  楚红英  刘治国 《化工进展》2007,26(11):1546-1553
综述了含磷本质阻燃环氧树脂(包括含磷协同本质阻燃体系)的发展、现状和未来趋势。与添加型阻燃剂阻燃环氧树脂相比,通过含磷环氧化合物和/或含磷固化剂把磷元素嵌入环氧树脂结构中制得的含磷本质阻燃环氧树脂,具有阻燃效率高、阻燃持久、物理力学性能不受影响、燃烧过程中毒性腐蚀性挥发物质的生成量低等优势。利用协同阻燃效应,可以进一步提高阻燃性能。但是,含磷本质阻燃环氧树脂和含磷协同本质阻燃体系存在制备工艺复杂、生产成本较高等不足。  相似文献   

8.
To further enhance the fire safety of epoxy resins, a phosphorus–nitrogen synergistic flame retardant (DPVHD) with a flexible chain segment and a nitrile group was synthesized. In addition to the traditional flame retardant elements P and N, the flame retardancy of the epoxy composites is further enhanced by the cross-linking effect of the nitrile groups introduced to form an interpenetrating network with the epoxy matrix. The results showed that the sample with 10 wt% DPVHD-10/EP had a LOI of 32.3% and passed the UL-94 V-0 rating, with PHRR and THR reduced by 15.4% and 47%, respectively, compared to pure EP. It is worth noting that the introduction of flexible chain segments improves the flexural properties of the epoxy resin matrix. Compared with pure epoxy, the flexural properties of epoxy-cured compounds with DPVHD addition show a rising trend with the increase of flame-retardant additive. And the rise of DPVHD-10/EP reaches 33.6%, which greatly reduces the negative effect of flame-retardant additives on the mechanical properties of the epoxy resin matrix. This work therefore provides new ideas for exploiting the advantages of phosphorus-nitrogen synergy and nitrile-based cross-linking for flame retardancy in epoxy resins.  相似文献   

9.
Epoxy resins are widely used as coatings, adhesives and primers and in semiconductor encapsulation. A requirement that has recently gained importance is that of flame resistance, and imparting flame retardancy to epoxy resins has attracted much attention. Expandable graphite (EG) can improve flame‐retardant properties of polymers. Due to poor compatibility between polymer matrix and EG, flame‐retardant performance will be impaired. EG can be functionalized using a coupling agent. This gives rise to covalent bonding between organic and inorganic phases. This will improve the compatibility between filler and polymer to enhance the thermal stability of composites. X‐ray photoelectron spectroscopy was used to characterize the functionalizing reaction between coupling agent and EG. Thermogravimetric analysis (TGA) and integral procedural decomposition temperature (IPDT) were used to calculate the thermal stability of composites. The results show that functionalized EG can improve the thermal stability of the composites. TGA/mass spectroscopy (MS) shows that the amount of toxic gases liberated from the composites is less than that from pure epoxy. Novel epoxy/EG composites were prepared successfully via the sol–gel method. The results of TGA, IPDT and TGA/MS showed that functionalized EG can enhance the thermal stability of composites and can suppress the production of toxic gases. The composite materials could provide a safer choice. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
A systematic and comparative evaluation of the pyrolysis of halogen-free flame-retarded epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (phosphorus contents around 2.6 wt.%) and the fire behaviour of their carbon fibre composites is presented. Decomposition pathways are proposed based on the thermal analysis (TG), TG coupled with evolved gas analysis (TG-FTIR), kinetics and analysis of the residue with FTIR and XPS. All organophosphorus-modified hardeners containing phenoxy groups lead to a reduced decomposition temperature and mass loss step for the main decomposition of the cured epoxy resin. With increasing oxidation state of the phosphorus the thermally stable residue increases, whereas the release of phosphorus-containing volatiles decreases. The flammability of the composites was investigated with LOI and UL 94 and the fire behaviour for forced-flaming conditions with cone calorimeter tests performed using different irradiations. The flame retardancy mechanisms are discussed. With increasing oxidation state of the phosphorus additional charring is observed, whereas the flame inhibition, which plays the more important role for the performance of the composites, decreases. The processing and the mechanical performance (delamination resistance, flexural properties and interlaminar bonding strength) of the fibre-reinforced composites containing phosphorus were maintained at a high level and, in some cases, even improved. The potential for optimising flame retardancy while maintaining mechanical properties is highlighted in this study.  相似文献   

11.
A novel hyperbranched polyphosphate ester (HPE) was synthesized via the polycondensation of bisphenol-A and phosphoryl trichloride. The formed HPE was characterized by FTIR, 1H NMR and 31P NMR to confirm its structure. Then, a series flame retardant epoxy resins from bisphenol-A epoxy cured with HPE and bisphenol-A were prepared. The combustion behavior of the flame retardant epoxy resins was studied using limiting oxygen index (LOI) and cone calorimeter test. The LOI value increased from 23 to 32 when HPE, instead of bisphenol-A, was used as a curing agent. The cone calorimeter test data revealed that the cured bisphenol-A epoxy resin with HPE as a curing agent possessed improved flame retardancy. The photo graphs and scanning electron microscopy (SEM) of char residues confirmed the cone calorimeter results.  相似文献   

12.
Blended hybrids based on silsesquioxane cyclohexyl trisilanol [STOH; i.e., (c‐C6H11)7Si7O9(OH)3] and epoxy resin 4,5‐epoxyhexyl‐1,2‐dimethyl acid diglycidyl ester (TDE‐85) were prepared with good compatibility of STOH up to 5 wt % with TDE‐85. The blended hybrid resins, with various STOH additions, were cured by 4,4′‐diaminodiphenylsulfone, and the curing reactions were investigated with differential scanning calorimetry. The incorporation of STOH increased the curing reaction of TDE‐85 for three active hydrogens existing in the STOH molecule. The storage moduli and glass‐transition temperatures of the cured hybrid resins were studied with dynamic mechanical analysis. The cured hybrids had higher storage moduli than the pure epoxy resins at lower temperatures and increased slightly even when the temperature was above the glass‐transition temperature. Two peaks appearing in tan δ curves indicated the block copolymer structure and two different glass‐transition temperatures of the cured hybrid resins. The thermal stability and flame retardancy of the cured hybrid resins were investigated with thermogravimetric analysis and limited oxygen index values, respectively. The results showed that introducing silsesquioxane–OH units into epoxy resins could improve the thermal stability and flame retardancy of the resins. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
In this study, halogen‐free flame retardant tri(acryloyloxyethyl) phosphate (TAEP) was prepared using 2‐hydroxyethyl acrylate and phosphorus oxychloride. The chemical structure of TAEP was characterized by Fourier transform infrared and proton nuclear magnetic resonance spectrometers. The mixture of TAEP, acrylamide, and pentaerythritol tetrathioglycolate with different P, N, and S content were used to prepare flame retarding optical resin via the click chemistry curing. The curing performance, thermal stability, and flame retardant performance of the optical resins were measured by differential scanning calorimeter, thermogravimetric analyzer, vertical burning tester, and limiting oxygen index test, respectively. Additionally, the morphology of the burned residual was investigated by scanning electronic microscopy, and the refractive indices of the optical resins were measured by an Abbe Refractometer. The results strongly indicated that increasing sulfur content in resins improved their refractive indices, but deteriorated their flame retardancy. Meanwhile, the nitrogen element was helpful for the flame retardancy of the optical resin. With S N, and P contents of 3.00%, 1.00%, and 6.70 wt %, respectively, the refractive index of the optical resin reached up to 1.4987, and its flame retardancy achieved the UL‐94 V‐0 level and the LOI value of 29.3%. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46648.  相似文献   

14.
Advanced flame retardant epoxy resins with different contents of poly(DOPO substituted phenyl dimethanol pentaerythritol diphosphonate) (PFR) were prepared. PFR was synthesized from the polycondensation of DOPO-disubstituted benzenedimethanol (TDCA-DOPO) with pentaerythritol diphosphonate dichloride (SPDPC). The flame retardancy and thermal stability of the EP/PFR hybrids were investigated by limiting oxygen index (LOI), UL-94 test and thermogravimetric analysis (TGA) in air. LOI values increased from 21.5 for pure EP to 36.0 for phosphorus-containing resins, and UL-94 V-0 materials were obtained with the 15 wt% PFR. The TGA results indicated that incorporation of PFR significantly enhanced the char yield and the thermal stability of char layer at higher temperature. Differential scanning calorimetry revealed that the EP/PFR composites possessed higher glass transition temperatures than phosphorus-free EP, which was consistent with dynamic mechanical analysis results. The thermal degradation behaviors of the EP/PFR composites were investigated by real time Fourier transform infrared spectra (RTFTIR), thermogravimetric analysis/infrared spectrometry (TG–IR) and direct pyrolysis/mass (DP–MS) analysis. The results suggested that the addition of PFR can reduce the release of combustible gas, trap the H and OH radicals by releasing the PO radical and induce the formation of char layer, thus retard the polymer degradation and combustion process.  相似文献   

15.
综述了近几年多面体低聚倍半硅氧烷(POSS)在环氧树脂改性中的应用。POSS单独修饰环氧树脂,可提高其力学性能及热稳定性能;POSS协同9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物等功能性分子一起修饰环氧树脂,可增强其阻燃性能;POSS与碳纳米管、石墨烯等纳米材料共同修饰环氧树脂,可提高纳米材料在环氧树脂中的分散性,改善纳米复合材料的导电能力和黏结强度等性能;POSS与纤维共同修饰环氧树脂,可有效增强纤维与环氧树脂间的界面性能。最后展望了POSS修饰改性环氧树脂的未来方向:开发更简易的引入方式,引入更多样的官能分子,协同多种纳米材料修饰环氧树脂。  相似文献   

16.
Development of high‐performance thermosetting resins by adding environmentally friendly flame retardant to heat‐resistant resins without deteriorating their outstanding thermal stability is an important research direction. Here, a unique hybrid (GHNT) consisting of graphene oxide (GO) and halloysite nanotubes (HNT) was synthesized, and then a series of composites based on cyanate ester (CE) resin were fabricated. The effects of GHNT on the heat resistance, flame retardancy, and smoke suppression of GHNT/CE composites were intensively investigated. The GHNT/CE composite with 5.0 wt % GHNT not only has about 15.1 °C higher initial degradation temperature, but also shows 54.6% or 37.9% lower peak heat release rate or maximum smoke density than CE resin. These results clearly demonstrate that GHNT is not the simple combination of GO and HNT; instead, it obviously shows positive synergistic effects in simultaneously improving the flame retardancy and thermal resistance of CE resin. The improved flame retardancy could be attributed to condensed‐phase mechanisms, including increasing char yield, building a dense char layer, and free radical scavenging. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46587.  相似文献   

17.
A zirconium hybrid polyhedral oligomeric silsesquioxane derivative (Zr–POSS–bisDOPO) is synthesized by the corner-capping and Kabachnik–Fields reactions. It is characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR), and then used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) to endow epoxy resin (EP) with flame retardancy. The flame retardancy, thermal stability, and mechanical properties of the cured EP/Zr–POSS–bisDOPO composites are investigated. The results show that when Zr–POSS–bisDOPO is added by 5–7 wt%, the EP/Zr–POSS–bisDOPO composites pass the UL-94 V-0 rating test. In addition, they have a better flame-retardant effect than pure EP. The combination of Zr atom embedded in the Si O cubic cage and the two phosphaphenanthrene substituent groups in one corner of cubic cage is expected to realize the Zr/Si/P ternary intramolecular hybrid synergistic effect and achieve the possibility of dispersing metal–POSS cages at a sub-micrometer-scale level into polymer matrix. It also proves that Zr–POSS–bisDOPO produces phosphorus-containing free radicals and terminates the chain reactions in gas phase. Meanwhile the Si O Si and Zr O units are retained in the solid phase, which promote the char formation and enhance the flame retardancy. This kind of Zr-doped POSS will be helpful for developing the new metal–POSS hybrid flame-retardant and polymer composites.  相似文献   

18.
A range of flame retardant vinyl ester resins (VERs) samples have been produced containing different contents of PEPA (1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2]octane), APP (ammonium polyphosphate), and MoO3 (molybdenum trioxide). By investigating the flame retardancy of VER samples such as limiting oxygen index and UL-94, the synergistic flame retardance of APP, PEPA, and MoO3 has been revealed. The cone calorimeter is an instrument that measures the combustion data of samples. In the VER composites on fire, the synergistic smoke suppression effect of the APP, PEPA, and MoO3 was detected. The gas and condensed phase of VER composites with APP, PEPA, and MoO3 were tested by the thermogravimetric analysis (TGA)–Fourier transform infrared spectroscopy (FTIR) and FTIR. The char residues of samples have been studied at length by scanning electron microscopy and FTIR. The results show that the presence of MoO3 can promote the formation of P O and PO structures.  相似文献   

19.
DOPO based flame retardants demonstrate exceptional flame retardancy efficiency when applied to epoxy resins. However, the crosslinking degree of epoxy resin may decrease due to the addition of DOPO, leading to a deterioration in flame retardancy and mechanical properties. Herein, a reactive DOPO derivative flame retardant 6-((1H-benzo[d]imidazol-2-yl) amino) dibenzo oxaphosphinine 6-oxide (BADO) was successfully synthesized, which contains multiple reactive sites, thus ensuring a higher degree of crosslinking in the system. As a result, the modified epoxy resin exhibits excellent flame retardancy. The limiting oxygen index value of the modified epoxy resins increased from 19.8% to 29.7% by adding 7.5 wt% BADO, and its UL-94 test passed V-0. Flame retardancy mechanism analysis reveals that BADO exhibits both gas-phase and condensed-phase flame retardant effects. In particular, the formation of a porous inside-char layer is a significant factor in reducing smoke release. The 7.5% BADO/EP composite exhibited a 43.2% reduction in total smoke production and a 43.6% reduction in total smoke rate compared to neat epoxy resins (EP). Furthermore, the addition of BADO slightly deteriorates the mechanical properties of the modified epoxy resin.  相似文献   

20.
Two series of novel phosphorus‐containing poly(alkylene) amines with or without aromatic groups were synthesized via reacting phosphoryl chloride derivatives with commercially available polyetheramines, ethylenediamine and N‐phenyl‐1,4‐phenylenediamine, respectively. Chemical structures of the amines were characterized with FTIR, NMR, P (phosphorus) content measurement, and amine content titration. These amines were then utilized as curing agents to react with diglycidyl ether of bisphenol A for preparing phosphorus containing epoxy polymers. The introduction of soft ? P? O? linkage, polyalkyene, and hard aromatic group into the backbones of the synthesized phosphorus‐containing amine (PCA) provides epoxy resins with tunable flexibility. Thermal analysis of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) reveals that these resulted epoxy resins possess moderate Tg's and thermal stability. Furthermore, high char yields in TGA and high limited oxygen index (LOI) values indicate that these phosphorus‐containing epoxy (PCE) resins are capable of exhibiting excellent flame retardant properties. These polymers can be potentially utilized in flame retardant epoxy coatings and other applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3526–3538, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号