首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
选用缩水甘油醚型环氧树脂、芳香族多胺固化剂和空心玻璃微珠等原材料制备了低密度、高强度的全海深浮力材料,研究了低密度空心玻璃微珠K1的加入量对浮力材料的密度、单轴压缩强度、耐静水压强度和吸水率等性能的影响。结果表明,在空心玻璃微珠总体积分数为66.7%的全海深浮力材料中,加入适量空心玻璃微珠K1取代空心玻璃微珠HM42,能够降低全海深浮力材料的密度,浮力材料的单轴压缩强度不低于132 MPa,耐静水压强度不低于150 MPa,吸水率不高于0.2%。制备的全海深浮力材料有望满足全海深设备的安全使用。   相似文献   

2.
建立了固体浮力材料胶液粘度、密度、压缩强度和弹性模量的解析法计算模型,分析了空心玻璃微珠(HGB)对固体浮力材料胶液粘度、密度、压缩强度、弹性模量和吸水率的影响。结果表明,粒径较大的空心玻璃微珠胶液粘度相对略低;空心玻璃微珠的体积分数固定时,固体浮力材料密度随着微珠密度的升高而升高,压缩强度随微珠强度的升高而升高,弹性模量随微珠模量的升高而升高;同一静水压下,固体浮力材料的吸水率随微珠强度的升高而减小。  相似文献   

3.
以牌号为HGS8000X的空心玻璃微珠(HGM)为填料,以液体硅橡胶(SR)为基体,采用真空辅助浇铸法和模压法制备柔性浮力材料,并研究空心玻璃微珠体积分数对柔性浮力材料的密度、拉伸性能、硬度和吸水率的影响。结果表明,所制备的柔性浮力材料的密度为0.6~0.8 g/cm3,在40 MPa水静压下2 h吸水率最大不超过0.25%,是良好的深海用柔性浮力材料;随着空心玻璃微珠添加量的增加,柔性浮力材料的密度降低,吸水率增加,弹性降低,硬度提高。  相似文献   

4.
以环氧树脂E-4221为基质原料,十二烯基琥珀酸酐和甲基四氢苯酐为固化剂,以牌号为K20和HGS8000X两种空心玻璃微珠为轻质填充物,采用模压成型的方法制备了具有不同空心玻璃微珠配比的固体浮力材料。研究了玻璃微珠的配比对浮力材料的密度、抗压强度、吸水率及耐静水压性能的影响。结果表明,低密度空心微珠的引入,有效降低了固体浮力材料的密度;混合微珠填充更有利于固体浮力材料密度的降低;两种不同微珠相互配合可以得到适用于不同深度的高性能固体浮力材料。  相似文献   

5.
空心玻璃微珠填充固体浮力材料的制备及性能研究   总被引:1,自引:0,他引:1  
以双酚A环氧树脂E51为基质原料,甲基四氢苯酐为固化剂,K25空心玻璃微珠为轻质填充物,采用模压成形的方法制备了空心玻璃微珠填充固体浮力材料。研究了玻璃微珠的填充率对体系粘度、浮力材料的密度、抗压强度及耐静水压件能的影响。结果表明,低密度空心微珠的引入,有效降低了固体浮力材料的密度,并且随着玻璃微珠填充量的增大,材料的理论计算密度与实际密度的偏差逐渐变大;浮力材料的单轴压缩强度和耐静水压强度随着空心玻璃微珠填充量的增大而降低,当玻璃微珠填充量超过18%时,材料性能下降幅度增大。  相似文献   

6.
以双酚A环氧树脂E51为基质原料,甲基四氢苯酐为固化剂,K25空心玻璃微珠为轻质填充物,采用模压成形的方法制备了空心玻璃微珠填充固体浮力材料。研究了玻璃微珠的填充率对体系粘度、浮力材料的密度、抗压强度及耐静水压性能的影响。结果表明,低密度空心微珠的引入,有效降低了固体浮力材料的密度,并且随着玻璃微珠填充量的增大,材料的理论计算密度与实际密度的偏差逐渐变大;浮力材料的单轴压缩强度和耐静水压强度随着空心玻璃微珠填充量的增大而降低,当玻璃微珠填充量超过18%时,材料性能下降幅度增大。  相似文献   

7.
用双酚A型环氧树脂、环氧稀释剂、酸酐固化剂及改性空心玻璃微珠,采用真空复合浇注工艺,制备出了超低密度、高强度的全海深固体浮力材料。通过密度测试、耐全方位静水压测试和力学性能测试等手段对浮力材料进行了表征。结果表明:制备的全海深浮力材料密度为0.638g/cm3,116MPa、24h全方位静水压下的吸水率为0.125%,单轴压缩强度为105.2MPa,剪切强度为35.7MPa,拉伸强度为33.4MPa,破坏强度141MPa,综合性能优异,已成功应用到上海交通大学研制的全海深无人潜水器上。  相似文献   

8.
通过空心玻璃微珠(HGB)的体积分数、粒径、偶联剂改性等系列实验,总结分析了空心玻璃微珠对阻尼固体浮力材料力学性能的影响。结果表明,随着空心玻璃微珠体积分数的增加,浮力材料的吸水率逐渐增大,而密度、压缩强度和阻尼损耗因子逐渐降低;随着空心玻璃微珠粒径的增大,浮力材料的吸水率和阻尼损耗因子逐渐增加,而密度、压缩强度逐渐减小;添加偶联剂可有效改善空心玻璃微珠与环氧树脂的界面结合性,提高浮力材料的性能。   相似文献   

9.
以牌号为HGS8000X的空心玻璃微珠为填充材料,以环氧树脂为基体,采用真空辅助模压成型法制备了空心玻璃微珠体积添加量为65%—70%的复合泡沫材料。研究了空心玻璃微珠的体积分数对材料的密度、压缩强度、吸水率以及耐静水压性能的影响。结果表明,当空心玻璃微珠体积分数为67%—69%时,材料综合性能性能最佳,可以保持50 MPa、24 h的吸水率小于1%和压缩强度大于80 MPa的情况下使材料的密度由0.65 g/cm3降低到0.60 g/cm3。分析指出,高微珠含量的复合泡沫材料的性能更大程度上依赖于由于环氧树脂缺失而导致的材料的显微结构和空心玻璃微珠受力状态的改变。  相似文献   

10.
隔水管系统是海洋石油钻采的重要技术装备,而浮力材料是深水条件下钻井隔水管系统的必备部件。针对以深海石油钻采为重大应用背景的特种固体浮力材料,使用碳纤维增强聚合物中空球,与环氧树脂、空心玻璃微珠以适当比例混合,采用真空浇注工艺研发了一系列密度和强度的三相固体浮力材料,其密度为0.29~0.52g/cm3,压缩强度为8.27~32.35 MPa,耐静水压为10~45 MPa,吸水率3%。同时结合海洋石油981平台南海钻采作业要求,系统开展了深海石油钻采隔水管浮力块的设计与制备研究,形成了隔水管浮力材料的国产化产品。  相似文献   

11.
环氧树脂基固体浮力材料的制备及性能研究   总被引:1,自引:0,他引:1  
实验采用低密度空心玻璃微珠(HGMS)填充脂环族环氧树脂E-4221制备固体浮力材料。讨论了环氧树脂E-4221体系的固化工艺制度和树脂体系配方对固化环氧树脂材料强度的影响,测得固化树脂产物压缩强度范围值100~150 MPa。分析了树脂配方以及玻璃微珠体积含量对最终固体浮力材料性能的影响,通过优化条件制备出抗压强度在40~70 MPa之间,密度范围在0.5~0.7 g/cm3,吸水率低于0.2%的固体浮力材料,最后对浮力材料的压缩断面做了简要分析。  相似文献   

12.
使用浓H_2SO_4/浓HNO_3的混酸体系对碳纤维(CF)的表面进行处理得到氧化碳纤维(OCF)。采用超声分散和模具浇注成型法制备氧化碳纤维/空心玻璃微珠(HGMs)/环氧树脂固体浮力材料,研究了材料的密度、抗压强度、吸水率和断面形貌。使用ABAQUS数值模拟软件,建立了碳纤维增强固体浮力材料的模型,研究了碳纤维对材料应力分布的影响。结果表明,碳纤维经过氧化后,表面形成了羟基和羧基等基团,提高了自身与环氧树脂的界面结合状态。随着氧化碳纤维含量的增加,复合材料的占空比逐渐提高,但密度变化不大,而其抗压强度呈现先升高后降低的趋势。当碳纤维含量为5%(质量分数)时,抗压强度达41MPa,提高约13.8%。固体浮力材料吸水率随碳纤维含量增加而提高,但所有试样的吸水率均小于2%。复合材料模型受压后的应力云图表明,碳纤维能够有效代替固体浮力材料基体承载很大一部分载荷,空心玻璃微珠球壳所受应力降低,减少了空心玻璃微珠破碎和裂纹源的产生,从而对固体浮力材料起到增强作用。  相似文献   

13.
固体浮力材料及其性能研究现状   总被引:1,自引:1,他引:0  
概述了国内外固体浮力材料的研究进展,并针对我国研制的高强度空心玻璃微珠浮力材料密度偏大这一问题,重点介绍了空心玻璃微珠浮力材料的相关性能研究,分析了空心玻璃微珠和基体对浮力材料性能的影响,最后在此基础上展望了我国固体浮力材料的发展方向。  相似文献   

14.
以环氧树脂为基体, 经硅烷活化处理的空心玻璃微珠(HGM)为填充剂, 制备了高强浮力材料。采用XRD、 FRIR分析了HGM的结构和硅烷处理效果, 通过密度测试和单轴静态压缩试验研究了HGM的类型和含量对浮力材料性能的影响, 利用SEM和吸水率试验研究了浮力材料的断裂特性和吸水性。结果表明: HGM为无定形结构; 硅烷分子接枝在HGM表面, 使得HGM与环氧树脂完好结合且两者界面没有间隙沟槽; HGM的较大比压缩强度有利于提高浮力材料的性能; 高强浮力材料密度为0.645~0.850 g/cm3, 抗压强度为60~93 MPa, 比压缩强度为92~112 MPa·cm3·g-1; HGM含量较少时, 浮力材料断裂表面HGM破裂处的基体环氧树脂有拖尾特征, HGM含量增多时, HGM的破坏程度不断增大直至完全破坏; 浮力材料具有较好的抗吸水性。   相似文献   

15.
综述了国内外对环氧树脂及空心玻璃微珠填充环氧树脂基固体浮力材料吸水性的研究,分析了导致其吸水的各个影响因素。结果表明:造成吸水的原因是环氧树脂基固体浮力材料中存在的极性基团与自由体积以及环氧树脂和玻璃微珠界面间存在的间隙;可以通过改进环氧树脂的配方以及使用硅烷偶联剂活化空心玻璃微珠来降低固体浮力材料的吸水性。最后对环氧树脂基固体浮力材料的研究方向进行了展望。  相似文献   

16.
以聚丙烯(PP)为基体,以高性能空心玻璃微珠(HGMS)为填充体,通过真空热压成型法制备聚丙烯/空心玻璃微珠复合材料。研究了HGMS填充体积分数对复合材料的密度、拉伸强度、压缩强度、剪切强度和吸水率的影响,分析了复合材料断口的微观形貌。结果表明,采用真空热压成型法能够制备性能优良的PP/HGMS复合材料。当HGMS体积分数达到50%时,复合材料的密度降低到0.645 g/cm~3,并且具有35.64 MPa的压缩强度和1.41%的吸水率。  相似文献   

17.
为探究空心微珠填充量对树脂基深水浮力材料压缩性能的影响以及材料压缩破坏机理,基于Mori-Tanaka及Turesanyi方法对空心微珠填充环氧树脂基深水浮力材料的有效弹性模量及压缩强度进行了理论预测.制备了空心微珠填充环氧树脂基深水浮力材料,对不同空心微珠填充比的材料体系进行了单轴压缩试验,并通过扫描电镜观察了材料断裂面微观形貌.结果表明:随着空心微珠填充量增加,材料体系耐压强度降低,模量上升,且实验结果与理论预测吻合情况较好;空心微珠破损是深水浮力材料破坏的根本因素.  相似文献   

18.
采用2种方法(偶联剂处理和碱刻蚀+偶联剂处理)分别对空心玻璃微球进行界面活化处理,制备了轻质、高强的空心玻璃微球/环氧树脂固体浮力材料。通过红外光谱分析、扫描电镜、压缩性能测试和密度测试等表征手段研究了材料的结构、密度和压缩性能。研究表明,2种方法都能改善空心玻璃微球与环氧树脂之间的相容性和界面结合力,使材料的实际密度更接近理论密度,同时能显著提升材料的压缩强度。当空心玻璃微球填充量在10%时,相比未处理工艺制备的固体浮力材料,偶联剂处理和碱刻蚀+偶联剂处理得到的固体浮力材料的压缩强度分别提升18 MPa和22 MPa,上升幅度分别为13.5%和16.5%。  相似文献   

19.
韦璇  朱晓君 《功能材料》2007,38(A10):3846-3848
通过优化试验,以大量空心玻璃微珠填充环氧树脂体系制备出了密度低、强度高的复合泡沫材料,并对其密度和水下声学性能进行了表征。结果表明,所研制的轻质高强复合泡沫材料密度在0.3~0.5g/cm^3之间,且在高静水压下具有良好声学性能。  相似文献   

20.
借鉴陶瓷材料模压成型工艺提出了适用于环氧树脂基固体浮力材料制备的真空辅助模压成型自由固化方法,实现了固体浮力材料制备过程中成型与固化环节的分离,为高性能固体浮力材料的制备提供了新方法。以环氧树脂(E-4221)为基体,空心玻璃微珠(Hollow glass microsphere, HGMS)做填充材料,采用模压成型自由固化方法制备高HGMS体积分数的HGMS/E-4221固体浮力材料,研究了HGMS体积分数、成型压力对HGMS/E-4221固体浮力材料密度、抗压强度、吸水率等性能的影响。结果表明,真空辅助模压成型自由固化方法适用于HGMS体积分数为65%~67%的HGMS/E-4221固体浮力材料制备,所获得的HGMS/E-4221固体浮力材料密度为0.621~0.655 g/cm3,适用深度可达到8 000~10 000 m。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号