首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 569 毫秒
1.
李畅  薛璐  芦晶  逄晓阳  张书文  吕加平 《食品科学》2022,43(19):110-117
本实验通过高压微射流均质法制备二十二碳六烯酸(docosahexaenoic acid,DHA)藻油脂质体,以平均粒径、包封率为主要评价指标,研究大豆磷脂与胆固醇质量比、吐温-80用量、高压微射流均质压力等因素对DHA藻油脂质体的影响。在单因素试验基础上,通过响应面优化试验确定最佳制备工艺参数:大豆磷脂质量浓度为20 mg/mL,大豆磷脂与DHA藻油质量比为4∶1,大豆磷脂与胆固醇质量比为11.9∶1,吐温-80用量为大豆磷脂质量的15%,高压微射流均质压力为138 MPa,均质次数5 次。在此条件下,DHA藻油脂质体平均粒径为(59.35±3.05)nm,多分散指数为0.189±0.025,包封率为(94.2±2.9)%。此外,对DHA藻油脂质体的理化性质进行了分析,通过透射电子显微镜观察发现DHA藻油脂质体的微观结构为球状,且分布均匀;通过差示扫描量热法分析发现,与未经高压微射流均质处理脂质体相比,高压微射流均质处理有效地提高了脂质体的相变温度;稳定性分析实验结果表明,经高压微射流均质处理过的DHA藻油脂质体具有良好的物理稳定性、贮藏稳定性及氧化稳定性。  相似文献   

2.
以酪蛋白酸钠-葡萄糖美拉德反应产物(Millard reaction products,MRPs)作为乳化剂,在不同的均质条件下制备O/W型二十二碳六烯酸(docosahexaenoic acid,DHA)藻油乳状液,以相同条件下单独的酪蛋白酸钠作为对比,利用稳定性分析仪分析、贮藏期间的氧化程度分析和激光共聚焦显微镜观察对DHA藻油乳状液的物理稳定性、氧化稳定性和微观结构进行评价。结果显示:利用酪蛋白酸钠-葡萄糖MRPs制备的DHA藻油乳状液的物理稳定性和氧化稳定性远优于同等条件下单独的酪蛋白酸钠,说明酪蛋白酸钠经美拉德反应改性后具有优良的乳化性和抗氧化活性;同时,均质压力和次数对乳状液的稳定性和微观结构具有明显的影响。较优的工艺条件为均质压力95 MPa、均质3 次,此时酪蛋白酸钠-葡萄糖MRPs制备的DHA藻油乳状液的状态较好,Turbiscan稳定性分析仪对其扫描结果显示,乳状液只有轻微的顶部脂肪上浮和底部澄清,稳定性系数为1.55,小于其他各组;室温(25 ℃)贮藏28 d期间的总氧化值处于同期的最低水平;激光共聚焦显微镜下乳状液中油滴的粒径较小,主要分布在0.47~0.59 μm之间,且形态完整、较为均一。  相似文献   

3.
梁井瑞  李伟  王剑  王飞  王占一  冯晓慧  杜健 《食品科学》2019,40(19):128-135
以二十二碳六烯酸(docosahexaenoic acid,DHA)微藻油微胶囊化过程中形成的乳状液为研究对象,探究乳状液稳定性的测定方法和影响因素。通过比较3 种不同乳状液稳定性测定方法以及显微镜观察发现:采用0.1 g/100 mL十二烷基硫酸钠溶液对乳状液进行稀释,检测乳状液形成24 h在600 nm波长处透光率的变化可以方便、准确地衡量其稳定性。壁材组成、芯材比例和总固形物质量分数都能够明显影响乳状液稳定性,从而影响微胶囊产品品质。当壁材中辛烯基琥珀酸酯化淀粉与麦芽糊精的质量比在2∶3、DHA微藻油质量分数在20%、总固形物质量分数在33%以下时,制备得到的DHA微胶囊产品的品质较高,且能够满足SC/T 3505—2006《鱼油微胶囊》规定。微胶囊化后DHA微藻油的贮存稳定期得到明显延长。  相似文献   

4.
采用喷雾干燥法制备微藻油微胶囊,为优化微藻油微胶囊配方,以包封率为主要指标,对乳化剂、酪蛋白、环糊精用量及芯材含量进行响应面优化试验。结果表明:最佳配方为乳化剂用量3.98%、酪蛋白用量3.52%、环糊精用量11.1%、芯材含量30%。由此配方制备的微藻油微胶囊包埋率达到93.37%,产品经(60 ± 1)℃加速氧化14d 后,过氧化值仅为对照样品的三分之一;将微藻油微胶囊添加在婴儿配方奶粉中,经常温真空避光保存一年,DHA 保留率为91.06%,证明该微胶囊具有良好的氧化稳定性和贮藏稳定性。  相似文献   

5.
何镇宏  赵海珍  陆兆新 《食品科学》2017,38(21):146-151
以Surfactin作为表面活性剂制备藻油二十二碳六烯酸(docosahexaenoic acid,DHA)乳状液并研究其稳定性。研究发现,水相为质量分数0.8%的Surfactin溶液,在不添加助表面活性剂和其他添加剂的条件下,制备水包油型藻油DHA乳状液,在4℃和37℃条件下保存相比其他表面活性剂具有良好的物理稳定性,在浊度、粒径、Zeta电位和流变学角度与Tween-80-丙三醇等表面活性剂制备的藻油DHA乳状液相比均有显著差异(P0.05),Surfactin藻油DHA乳状液在各方面均优于其他表面活性剂的藻油DHA乳状液。在高温处理和常温贮存过程中,Surfactin藻油DHA乳状液的氧化稳定性也十分优良,在37℃贮存60 d乳状液过氧化值始终处于较低水平,仅为(1.635±0.202)meq/kg。  相似文献   

6.
二十二碳六烯酸(Docose Hexaenoie Acid,DHA)具有提高记忆与思维能力、改善视力等生理作用,但其不饱和度高,易腐败,稳定度差,目前多数采用喷雾干燥将其微胶囊化。但要获得高质量DHA藻油微胶囊,需要首先制备高稳定度、高包埋率的DHA乳状液。为此,需要优化高稳定度DHA藻油乳状液的制备条件,试验结果表明,最佳复合壁材为大豆分离蛋白加麦芽糊精;最佳乳化剂为蔗糖脂肪酸酯加单硬脂酸甘油酯(质量配比为7∶3),最佳乳化剂添加量为2.0%,最佳剪切乳化时间为7 min,最佳乳化温度为85℃。在此条件下乳化液稳定度保持在95.6%以上。  相似文献   

7.
以二十二碳六烯酸(docosahexenoic acid,DHA)微藻油微胶囊化过程中形成的乳状液为研究对象,通过测定乳状液稳定性、界面膜强度、界面张力、粒径和Zeta-电位,探究乳化剂、pH值和金属离子对乳状液稳定性的影响。结果表明,司盘80与吐温60复配的乳状液亲水亲油平衡(hydrophile-lipophile balance,HLB)值为11.19时,对乳状液稳定性的提升效果最明显。乳化剂的种类比HLB值更明显地影响乳状液稳定性,其作用机制与乳状液的界面膜强度紧密相关。吐温20与单甘酯复配乳化剂(体积比58∶42)添加量高于1.2%时,界面膜强度高,乳状液最稳定。此外,乳状液的pH值与金属离子均能明显影响乳状液稳定性。pH值越高,乳状液中静电斥力越强,从而促进稳定性提高。低浓度的金属离子能够提高乳状液稳定性;高浓度金属离子,尤其是高价金属离子,能明显降低乳状液稳定性。高浓度Fe3+能够通过氧化DHA的方式破坏乳状液,甚至使乳状液形成不溶性的悬浊状态。结论:研究可为提高DHA微藻油乳状液稳定性和开发高质量微胶囊提供参考。  相似文献   

8.
甜菜果胶制备藻油乳化液及其稳定性研究   总被引:1,自引:0,他引:1  
藻油富含对人体非常重要的多不饱和脂肪酸DHA(二十二碳六烯酸),但其极易被光、热和氧等因素诱使发生氧化反应。防止氧化反应发生,制备成稳定的油/水乳化液将其包埋成为其在食品中应用的关键问题。本研究采用甜菜果胶为乳化剂对其进行乳化包埋,研究了乳化条件如乳化剂量、油水比率、pH和均质条件对乳化液稳定性的影响。结果表明,最适的乳化条件为:乳化剂添加量在2.5%以上,油水比1:10,pH〉5,35MPa压力下均质3个循环得到比较稳定的乳化液。  相似文献   

9.
以中链甘油三酯(medium-chain triglycerides,MCT)为芯材,辛烯基琥珀酸淀粉钠和麦芽糊精为壁材,通过剪切和高压均质工艺制备不同粒径的MCT乳状液,并通过喷雾干燥工艺制备微胶囊,探讨乳状液粒径对乳状液乳化稳定性、微胶囊包埋率及储藏稳定性(微胶囊复溶粒径、表面油含量)的影响。结果表明,粒径对乳化稳定性、微胶囊包埋率和储藏稳定性均有一定影响。当乳状液粒径大于300 nm时,随着乳状液粒径的减小,微胶囊表面更加致密光滑,包埋率更高(>95%),储藏后复溶乳状液粒径变化越小,表面油含量越低。但当乳状液粒径小于300 nm时,壁材分子结构被破坏,乳化稳定性和储藏稳定性下降。  相似文献   

10.
以鱼油为芯材,鱼骨明胶和褐藻多糖为壁材,利用层层自组装技术制备多层鱼油乳状液,通过喷雾干燥法制得多层鱼油微胶囊并研究其贮藏稳定性。根据Zeta电位的大小确定制备多层乳状液所需的最适壁材浓度。采用正交试验确定多层鱼油微胶囊制备的最佳工艺条件为:超声时间10min,超声温度25℃,均质时间4min,均质速率5 000r/min,鱼油微胶囊的包埋率达82.03%。过氧化值的结果表明微胶囊化可明显提高鱼油的贮藏稳定性,且3层鱼油微胶囊的氧化速率最低。  相似文献   

11.
本实验分别利用高压均质、空化射流和超声破碎3 种均质方式制备以大豆分离蛋白和磷脂酰胆碱包裹的鱼油纳米乳液和微胶囊,并对纳米乳液粒径、Zeta-电位、稳定性、黏度、乳化产率及微胶囊形貌、理化性质、稳定性进行比较分析,研究均质工艺对鱼油纳米乳液和微胶囊理化性质的影响。结果发现,空化射流工艺制备的纳米乳液平均粒径小,乳化产率和乳液稳定性较高,经过空化射流10 min制备的微胶囊包埋率达87.44%,溶解度较高,微胶囊颗粒表面形态饱满、致密、无裂纹和空隙,氧化稳定性和热稳定性较好。高压均质和超声破碎制得的纳米乳液平均粒径大,乳化产率和乳液稳定性较低,经过100 MPa高压均质和400 W超声破碎制得的微胶囊包埋率分别为80.36%和78.64%,溶解度相较于空化射流差,微胶囊颗粒表面分别出现微孔和较大的孔洞,氧化稳定性和热稳定性较差。傅里叶变换红外光谱分析结果表明3 种均质工艺均有较好的包埋效果。通过实验可以得出空化射流均质工艺制备的鱼油纳米乳液及微胶囊在产品性能上要优于其他两种均质工艺。本研究可为鱼油纳米乳液和微胶囊产品的均质工艺选择以及应用评价体系的构建提供理论依据。  相似文献   

12.
研制低热值脂肪替代物,寻找到一种即可降低脂肪含量、有益健康,又能保证风味、口感、质地等感官特性需求的新型肉类制品.利用油脂、乳化剂、蛋白质等添加剂,以油水相比、均质时间、油温和水温4个试验因素做L9(34)正交试验及二次通用旋转组合设计,确定制备复合脂肪替代物的最优工艺组合.最优组合为油水料液比35:65、均质时间30...  相似文献   

13.
王森  陈英 《纺织学报》2020,41(5):105-111
为解决传统乳液中乳化剂含量较高的问题,采用改性纳米TiO2-水杨酸(SA)作为乳化剂,制备Pickering乳液,应用于防蚊微胶囊的制备。研究了纳米TiO2水杨酸表面改性、TiO2-SA质量分数、乳化速度、乳化时间、聚乙烯醇(PVA)质量分数对乳液稳定性及制备微胶囊的影响。通过对乳液粒径、微胶囊的包埋率、粒径的表征得出合成防蚊微胶囊时乳化条件为:TiO2-SA质量分数0.75%,PVA质量分数1.0%,室温,乳化速度8 000 r/min,乳化时间7 min。研究表明:改性TiO2可改善纳米TiO2的亲油亲水性能以及乳液的稳定性;用研究所得乳化条件制备的Pickering乳液合成的微胶囊球形规则,表面光滑,包埋率为84.02%,平均粒径为2.867 μm;能谱分析表明,微胶囊表面含有C、O、N和Ti元素。  相似文献   

14.
研究了葡萄籽油微胶囊的制备工艺及其氧化稳定性,以葡萄籽油为芯材,阿拉伯胶与麦芽糊精为壁材,在复合乳化剂的作用下进行乳化,以喷雾干燥法得到微胶囊产品并测定其氧化稳定性。研究表明阿拉伯胶与麦芽糊精重量比为3∶1,乳化剂浓度为10%,芯壁比为1∶2,温度为45℃,均质速度为12000r/min,乳化时间为12 min时制备得到稳定的葡萄籽油乳液,在进风温度180℃、出口温度80℃、进料速率5mL/min条件下喷雾干燥得到葡萄籽油微胶囊,葡萄籽油微胶囊化效率达到72.56%,60℃条件下贮藏葡萄籽油微胶囊的氧化速率明显降低,贮存性能和抗氧化性显著提高。  相似文献   

15.
采用明胶-阿拉伯树胶为壁材,制备盐酸小檗碱微胶囊,研究制备中乳化剂的用量、皮芯比、乳化时间、固化时间、乳化温度、搅拌速度等因素对微胶囊制备的影响,探讨最佳的制备工艺。结果表明:当乳化剂质量分数为0.5%,皮芯比为5∶12,乳化时间150min,固化时间120min,乳化温度50℃,搅拌速度1200r/min时,微胶囊的平均粒径与包埋率达到最佳值。  相似文献   

16.
以海藻酸钠为囊材,制备鱼油微丸,并对其稳定性进行研究。方法:鱼油和海藻酸钠混匀、乳化,滴入氯化钙冷凝液制成滴丸;用Agilent6890气相色谱仪,HP-5气相色谱柱,柱温230℃,进样口温度260℃,检测室温度280℃,测定微丸中EPA和DHA含量;测定其5、10d60℃、光照、相对湿度75%加速实验的稳定性;筛选微丸的抗氧化剂。结果:精密称取高、中、低三剂量鱼油微丸,用研磨超声法测定其中EPA、DHA含量,其测定方法精密度分别为3·06%,3·06%,2·86%;3·06%,3·61%,3·19%(n=5)。高、中、低3个剂量鱼油微丸中EPA、DHA平均加样回收率分别为100·6%,99·96%,101·7%;102·4%,100·9%,101·2%(n=3)。在60℃、光照、相对湿度75%中置5、10d后含量下降不大,仍然稳定;抗氧化性比较TBHQ>BHA>VE。结论:用海藻酸钠制备鱼油微丸简便、可行、稳定,具有一定的开发价值。  相似文献   

17.
为克服薄荷油易挥发、不易溶于水的缺点,以大豆分离蛋白-磷脂酰胆碱复合物作为乳化剂,采用高压均质法制备薄荷油纳米乳液,研究大豆分离蛋白质量分数、薄荷油质量分数及均质压力对薄荷油纳米乳液的平均粒径、多分散性指数、Zeta电位、浊度、乳化产率、乳液稳定性指数的影响,并确定制备薄荷油纳米乳液的最佳工艺参数为:大豆分离蛋白质量分数2.5%、薄荷油质量分数5%、均质压力80 MPa。通过动态光散射和透射电镜验证最佳条件制备的薄荷油纳米乳液平均粒径小且分布均匀;通过气相色谱-质谱检测发现大豆蛋白-磷脂酰胆碱为乳化剂制备的纳米乳液可有效保护薄荷油功能成分;流变学特性结果表明薄荷油纳米乳液具有良好的动力学稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号