首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
管朋  ;展明浩 《电子科技》2014,27(9):175-177
聚合物低温键合技术是MEMS器件圆片级封装的一项关键技术。以苯并环丁烯(BCB)、聚对二甲苯(Parylene)、聚酰亚胺(Polyimide)、有机玻璃(PMMA)作为键合介质,对键合的温度、压力、气氛、强度等工艺参数进行了研究,并分析了其优缺点。通过改变Parylene的旋涂、键合温度、键合压力、键合时间等工艺参数进行了优化实验。结果表明,在230 ℃的低温键合条件下封装后的MEMS器件具有良好的键合强度(>3.600 MPa),可满足MEMS器件圆片级封装要求。  相似文献   

2.
一种基于BCB键合技术的新型MEMS圆片级封装工艺   总被引:2,自引:1,他引:1  
苯并环丁烯(BCB)键合技术通过光刻工艺可以直接实现图形化,相对于其他工艺途径具有工艺简单、容易实现图形化的优点。选用4000系列BCB材料进行MEMS传感器的粘接键合工艺试验,解决了圆片级封装问题,采用该技术成功加工出具有三层结构的圆片级封装某种惯性压阻类传感器。依据标准GJB548A对其进行了剪切强度和检漏测试,测得封装样品漏率小于5×10-3Pa.cm3/s,键合强度大于49N,满足考核要求。  相似文献   

3.
用苯并环丁烯进行圆片级硅–硅气密性键合   总被引:1,自引:0,他引:1  
应用苯并环丁烯(BCB)材料对硅片进行了圆片级低温键合,并研究了其在气密性封装工艺中的应用。测试表明:在250℃的低温键合条件下,封装后样品的气密性优于3.0×10–4Pa.cm3/sHe;剪切力达4.7MPa以上;封装样品合格率达94%以上;通过热循环可靠性测试之后仍具有很好的气密性。BCB是一种较理想的圆片级低温气密性健合封装材料。  相似文献   

4.
为了提高高g微机械加速度传感器在极端恶劣环境中应用的可靠性,根据自制的高g微机械加速度传感器芯片,研究设计了一种新型"台阶式"传感器芯片的盖帽封装结构。利用圆片级键合工艺和有限元分析(FEA)方法确定了盖帽封装结构材料与尺寸的设计方案。优化微电子机械系统(MEMS)加工工艺流程完成对盖帽封装结构的加工,并通过数字电子拉力机对实现圆片级盖帽封装的传感器芯片进行键合强度测试。测试结果表明,键合强度为35 000 kPa,远大于抗过载封装设计要求下的键合强度值(401.2 kPa),证明了盖帽封装结构设计的可行性和可靠性。  相似文献   

5.
应用苯并环丁烯(BCB)材料对硅片和玻璃片进行了250℃下的圆片级低温键合实验,同时进行了300℃下的硅片与玻璃片阳极键合实验,并对其气密性和剪切力特性进行了对比研究.测试结果表明:在250℃的低温键合条件下,经过500kPa He气保压2h,BCB封装后样品的气密性达到(5.5±0.5)×10-4Pa cc/s He;剪切力在9.0~13.4 MPa之间,达到了封装工艺要求;封装成品率达到100%.这表明应用BCB材料键合是一种有效的圆片级低温气密性封装方法.还根据渗流模型理论,讨论了简易模型下气密性(即渗流率)和器件腔体边缘到划片边缘的间距的关系.  相似文献   

6.
应用苯并环丁烯(BCB)材料对硅片和玻璃片进行了250℃下的圆片级低温键合实验,同时进行了300℃下的硅片与玻璃片阳极键合实验,并对其气密性和剪切力特性进行了对比研究.测试结果表明:在250℃的低温键合条件下,经过500kPa He气保压2h,BCB封装后样品的气密性达到(5.5±0.5)×10-4Pa cc/s He;剪切力在9.0~13.4 MPa之间,达到了封装工艺要求;封装成品率达到100%.这表明应用BCB材料键合是一种有效的圆片级低温气密性封装方法.还根据渗流模型理论,讨论了简易模型下气密性(即渗流率)和器件腔体边缘到划片边缘的间距的关系.  相似文献   

7.
针对微电子机械系统(MEMS)圆片级封装腔体体积小、传统的真空封装测试方法适用性差的情况,研制了一种用于表征圆片级真空封装真空度的器件——MEMS微谐振器。利用此谐振器不仅可以表征圆片级真空封装真空度,也可用于圆片级真空封装漏率的测试。采用MEMS体硅工艺和共晶圆片键合技术实现了微谐振器的圆片级真空封装,利用微谐振器阻尼特性建立了谐振器品质因数与真空度的对应关系,通过设计的激励电路实现了微谐振器品质因数的在片测试,对不同键合腔体真空度下封装的MEMS微谐振器进行测试,测试结果显示该微谐振器在高真空度0.1~8 Pa范围内品质因数与真空度有很好的对应关系。  相似文献   

8.
应用苯并环丁烯(BCB)材料对硅片和玻璃片进行了250℃下的圆片级低温键合实验,同时进行了300℃下的硅片与玻璃片阳极键合实验,并对其气密性和剪切力特性进行了对比研究. 测试结果表明:在250℃的低温键合条件下,经过500kPa He气保压2h, BCB封装后样品的气密性达到(5.5±0.5)E-4Pacc/s He;剪切力在9.0~13.4MPa之间,达到了封装工艺要求;封装成品率达到100%. 这表明应用BCB材料键合是一种有效的圆片级低温气密性封装方法. 还根据渗流模型理论,讨论了简易模型下气密性(即渗流率)和器件腔体边缘到划片边缘的间距的关系.  相似文献   

9.
提出了一种MEMS器件的圆片级封装技术。通过金硅键合和DRIE通孔制备等关键工艺技术,可以实现真空度从102 Pa到2个大气压可调的圆片级封装。作为工艺验证,成功实现了圆片级真空封装MEMS陀螺仪的样品制备。对封装后的陀螺仪样品进行了剪切力和品质因数Q值测试,剪切力测试结果证明封装样品键合强度达到5 kg以上,圆片级真空封装后陀螺的品质因数Q值约为75 000,对该陀螺的品质因数进行了历时1年的跟踪测试,在此期间品质因数Q的最大变化量小于7‰,品质因数测试结果表明封装具有较好的真空特性。  相似文献   

10.
葛羽屏 《压电与声光》2013,35(1):105-107
研究了一种使用非光敏苯并环丁烯(BCB)材料的低温硅片级键合,并将其用于压力谐振传感器封装.采用AP3000作为BCB中的黏结促进剂,将谐振片与硅片或Pyrex 7740玻璃晶圆键合,程序简单,低成本,密封性能较高,且键合温度低于250℃.通过拉伸实验,这种键合的剪切强度高于40 MPa.所以此硅片级键合适用于压力传感器的封装.  相似文献   

11.
MEMS器件大都含有可动的硅结构 ,在器件加工过程中 ,特别是在封装过程中极易受损 ,大大影响器件的成品率。如果能在MEMS器件可动结构完成以后 ,加上一层封盖保护 ,可以显著提高器件的成品率和可靠性。本文提出了一种用于MEMS芯片封盖保护的金 硅键合新结构 ,实验证明此方法简单实用 ,效果良好。该技术与器件制造工艺兼容 ,键合温度低 ,有足够的键合强度 ,不损坏器件结构 ,实现了MEMS器件的芯片级封装。我们已经将此技术成功地应用于射流陀螺的制造工艺中  相似文献   

12.
Adhesive wafer-level bonding is an excellent solution to meet the stringent requirements in micro-electro-mechanical systems (MEMS) packaging, one of the challenges in MEMS manufacturing, in a steadily growing micro-systems market. A range of bonding processes for commercially available substrate bonders have been developed, which apply global heating during the bonding procedure. This article, however, describes an approach where heating is kept to a minimum by combining the merits of laser joining, a truly localised heating technique, and adhesive wafer-level bonding. This unique bonding technique, which enables the use of temperature-sensitive materials within the package, is demonstrated for bonding of silicon to glass - materials commonly used in MEMS fabrication - with a benzocyclobutene (BCB) intermediate bonding layer. As a proof of concept for wafer-level packaging, bonding of two simplified patterns is demonstrated, one with five individual samples on the same wafer, and the other with nine samples. To verify the influence of this innovative bonding technique on the quality of the seal the devices are shear force tested and the results are compared with those of devices packaged at chip-level.  相似文献   

13.
综述了微电子机械系统(MEMS)封装主流技术,包括芯片级封装、器件级封装和系统及封装技术进行了。重点介绍了圆片级键合、倒装焊等封装技术。并对MEMS封装的技术瓶颈进行了分析。  相似文献   

14.
Intermediate wafer level bonding and interface behavior   总被引:2,自引:0,他引:2  
The paper presents a new silicon wafer bonding technique. The high-resolution bonding pad is defined through photolithography process. Photosensitive materials with patternable characteristics are served as the adhesive intermediate bonding layer between the silicon wafers. Several types of photosensitive materials such as SU-8 (negative photoresist), AZ-4620 (positive photoresist), SP341 (polyimide), JSR (negative photoresist) and BCB (benzocylbutene) are tested and characterized for their bonding strength. An infrared (IR) imaging system is established to examine the bonding results. The results indicate that SU-8 is the best bonding material with a bonding strength up to 213 kg/cm2 (20.6 MPa) at bonding temperature less than 90 °C. The resolution of bonding pad of 10 μm can be achieved. The developed low temperature bonding technique is particularly suitable for the integration of microstructures and microelectronics involved in MEMS and VLSI packaging processes.  相似文献   

15.
This paper presents design, fabrication and evaluation of a wafer level MEMS (Micro Electro Mechanical System) encapsulation using an Au to Au direct bonding with wrinkle patterned layer. For the effective encapsulation, the optimal bonding condition, the bonding temperature 350 °C, the bonding pressure 58 MPa and the duration time 30 min, was developed and used in this paper. We briefly evaluated the bonding strength of test wafers after the bonding test. For RF (Radio Frequency) device packaging, we effectively interconnected Au CPW (Coplanar Waveguide) lines to feedthroughs and measured the RF characteristics. Measured insertion loss of the packaged CPW line was −0.11 dB at 2 GHz. The glass wafer having patterned Au sealing lines was also bonded and has been dipped in the acetone solution for 24 h to examine the leakage of bonding wafer. After 24 h dipping, any leakage point has not been observed at the sealing line and inside the cavity. These results showed that our Au to Au direct bonding method is very reliable and suitable for RF device packaging.  相似文献   

16.
MEMS圆片级真空封装金硅键合工艺研究   总被引:2,自引:1,他引:1  
提出一种适用于微机电系统(MEMS)圆片级真空封装的键合结构,通过比较分析各种键合工艺的优缺点后,选择符合本试验要求的金硅键合工艺.根据所提出键合结构和金硅键合的特点设计键合工艺流程,在多次试验后优化工艺条件.在此工艺条件下,选用三组不同结构参数完成键合试验.之后对比不同的结构参数分别测试其键合质量(包括键合腔体泄漏率...  相似文献   

17.
MEMS post-packaging by localized heating and bonding   总被引:1,自引:0,他引:1  
This work addresses important post-packaging issues for microsystems and recommends specific research directions by localized heating and bonding. Micropackaging has become a major subject for both scientific research and industrial applications in the emerging field of microelectromechanical systems (MEMS). Establishing a versatile post-packaging process not only advances the field but also speeds up the product commercialization cycle. A review of engineering bases describing current technologies of MEMS packaging and wafer bonding is followed by an innovative post-packaging approach by localized heating and bonding, process demonstrations by selective encapsulation are presented, including an integrated low pressure chemical vapor deposition (LPCVD) sealing process, localized silicon-gold eutectic bonding, localized silicon-glass fusion bonding, localized solder bonding and localized CVD bonding processes.  相似文献   

18.
A laser-assisted bonding technique is demonstrated for low temperature region selective processing. A continuous wave carbon dioxide (CO2) laser (λ=10.6 μm) is used for solder (Pb37/Sn63) bonding of metallized silicon substrates (chips or wafers) for MEMS applications. Laser-assisted selective heating of silicon led to the reflow of an electroplated, or screen-printed, intermediate solder layer which produced silicon–solder–silicon joints. The bonding process was performed on fixtures in a vacuum chamber at an air pressure of 10−3 Torr to achieve fluxless soldering and vacuum encapsulation. The bonding temperature at the sealing ring was controlled to be close to the reflow temperature of the solder. Pull test results showed that the joint was sufficiently strong. Helium leak testing showed that the leak rate of the package met the requirements of MIL-STD-883E under optimized bonding conditions and bonded packages survived thermal shock testing. The testing, based on a design of experiments method, indicated that both laser incident power and scribe velocity significantly influenced bonding results. This novel method is especially suitable for encapsulation and vacuum packaging of chips or wafers containing MEMS and other micro devices with low temperature budgets, where managing stress distribution is important. Further, released and encapsulated devices on the sealed wafers can be diced without damaging the MEMS devices at wafer level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号