首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
采用区熔法和机械球磨(MM)与放电等离子烧结(SPS)技术相结合制备P型Bi2Te3基热电材料。在300-423K的温度范围内测试了样品的电导率、Seebeck系数和热导率。系统研究了球磨时间对合金化与热电性能的影响。球磨10h的样品在室温时具有最低的热导率,因此其热电优值高于其它样品,在室温时达到最大值0.995。  相似文献   

2.
采用熔融淬火和高温退火法合成填充方钴矿Yb_(0. 3)Co_4Sb_(12)块体,用高能球磨的方法将已经填充的方钴矿研磨为微纳米级粉末,然后采用等离子体快速烧结(SPS)技术将其烧结成块体材料。通过XRD分析材料的物相结构,使用SEM和TEM观察粉体和块体材料的微观形貌,发现高能球磨后的晶粒尺寸为50~500 nm,分布较宽。重点研究讨论了烧结温度和烧结压力等烧结工艺对热电传输性能的影响:发现随着烧结温度的提高,材料的热电性能先升高后降低,这是由于烧结温度的升高使得样品致密度有效提高,引起材料热电性能提升,而过高的烧结温度造成材料晶粒异常长大导致材料的热导率提升,热电性能劣化;提高烧结压力可以略微提高样品的致密度与热电性能。研究发现,当烧结温度约为875 K、烧结压力约为90 MPa时,材料的热电性能最佳,热电优值(ZT值)在750 K时达到1.19。  相似文献   

3.
MA-SPS制备高热电性能p型(Bi,Sb)2Te3合金块体   总被引:1,自引:0,他引:1  
李佳  张忻  路清梅  张久兴  卫群 《功能材料》2008,39(6):919-922
机械合金化与放电等离子烧结技术(SPS)相结合制备了p型(Bi,Sb)2Te3合金块体.在300~423K的温度范围内测试了样品的电导率﹑Seebeck系数和热导率.系统研究了球磨时间对合金化与热电性能的影响.球磨2h的样品具有最低的热导率,因此其ZT值最高,在323K时为1.16,在373K达到最大值1.23.  相似文献   

4.
采用熔融法结合SPS烧结技术制备了不同Yb含量掺杂的Co Sb3块体热电材料,当Yb含量为0.3时,其热电性能最佳,ZT值在800 K达到了1.19。随后采用高能球磨技术,对熔融法合成的Yb_(0.3)Co_4Sb_(12)粉体进行球磨得到纳米尺度粉体,利用SPS烧结技术制得Yb_(0.3)Co_4Sb_(12)块体热电材料。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)、热电测试装置(ZEM-3)及激光热导仪等仪器对样品进行表征。XRD分析结果表明球磨后Yb_(0.3)Co_4Sb_(12)粉体没有发生相变和分解。从FESEM和TEM分析结果可以看出,球磨可以显著细化粉体,SPS烧结之后样品的晶粒尺寸小于500 nm,其中部分晶粒小于100 nm。通过对比球磨前后粉体SPS烧结样品的热电性能发现,晶粒尺寸减小之后塞贝克系数有一定程度的增加,热导率下降明显,降低了1/3,但是材料的电导率下降更为显著,降低了10倍左右,因此导致材料最终的ZT值相应下降。  相似文献   

5.
成波  刘勇  刘大博  林元华  南策文 《功能材料》2012,43(14):1825-1828
利用放电等离子SPS烧结工艺制备得到Zn、Pr共掺的In2O3多晶陶瓷材料。通过研究材料的热电传输性能和微观结构,发现共掺工艺对SPS烧结的In2O3陶瓷材料的传输性能有着显著的影响,其结构为多孔结构。低浓度共掺的样品在测试温度范围内能够得到较高的电导率(约100S/m)和热电势(约200μV/K)。其中试样In1.92(Pr,Zn)0.08O3的热导率973K最低为2.5W/(m.K),该样品可获得最高的热电功率因子3.5×10-4 W/(m.K2),对应其热电优值0.10。其性能表明利用放电等离子SPS烧结工艺制备的In2O3基陶瓷作为n型高温热电材料具有很好的潜力。  相似文献   

6.
采用真空熔炼、机械球磨及放电等离子烧结技术(SPS)制备得到了(Ag2Te)x(Bi0.5Sb1.5Te3)1-x(x=0,0.025,0.05,0.1)系列样品,性能测试表明,Ag2Te的掺入可以显著改变材料的热电性能变化趋势,掺杂样品在温度为450~550K范围内具有较未掺杂样品更优的热电性能.适当量的Ag2Te掺入能够有效地提高材料的声子散射,降低材料的热导率.在测试温度范围内,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95具有最低的晶格热导,室温至575K范围内保持在0.2~0.3W/(m·K)之间,在575K时,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95试样具有最大热电优值ZT=0.84,相较于未掺杂样品提高了约20%.  相似文献   

7.
机械合金化和放电等离子烧结制备AgPbSbTe热电材料   总被引:1,自引:0,他引:1  
采用机械合金化和放电等离子烧结方法制备高性能AgPbSbTe热电材料,研究了制备工艺对材料热电性能的影响。结果表明,材料的物相组成和热电性能都受到机械合金化时间的影响;适当地控制放电等离子烧结工艺可以抑制晶粒长大,增加晶界散射,降低热导率。实验中得到AgPbSbTe热电材料的最大功率因子为18μW/K~2cm,最小热导率为1.1 W/m K。机械合金化(球磨4 h、转速350 r/m)并在673 K放电等离子烧结5 min,得到AgPbSbTe材料的最大热电优值ZT为1.2(700 K)。  相似文献   

8.
以商用区熔(ZM)n型Bi2Te3基材料为原料,采用简单研磨结合放电等离子烧结技术(ZM+SPS)和熔体旋甩(MS)结合放电等离子烧结技术(MS+SPS)制备了n型Bi2Te3基块体热电材料.对三种不同工艺制备出样品的微结构、热电性能和力学性能进行了研究.FESEM微结构表征结果表明:区熔样品的晶粒粗大,有较强的取向性;经SPS烧结后,晶粒细化,取向性大为降低;而区熔样品经MS+SPS后,晶粒得到进一步细化,且没有明显的取向性.对三组样品进行的热电性能和抗压强度测试,结果表明:区熔原料最大ZT值为0.72(430K),抗压强度仅为40MPa;经SPS后,样品的最大ZT值为0.68(440K),抗压强度为110MPa,相比区熔样品提高了175%;MS+SPS样品的最大ZT值为0.96(320K),其室温ZT值相比区熔样品提高了64%,抗压强度相比区熔样品提高了400%,达到200MPa.  相似文献   

9.
通过快淬-机械球磨-放电等离子烧结工艺制备了p型(Bi0.25Sb0.75)2Te3块体热电材料.在300~523K温度范围内对其电导率、Seebeck系数和热导率进行了测试,并系统研究了快淬后球磨时间对合金热电性能的影响.研究结果表明,随着球磨时间的延长,样品的电导率呈先降后升的趋势,Seebeck系数变化并不明显,而热导率随球磨时间的延长逐渐下降.球磨20h的样品在室温下具有最高的热电优值,最大值达到0.96,机械抗弯强度达到91MPa.  相似文献   

10.
In2O3作为一种良好的光电和气敏材料, 因高温下具有优异的热电性能在热电领域也获得广泛关注。本研究通过固相反应法结合放电等离子烧结(SPS)成功将原位自生的InNbO4第二相引入到In2O3基体中, 优化了块体样品的制备工艺。同时, InNbO4改善了样品的电输运性能, 使载流子浓度明显提高, 在1023 K时电导率最高可达1548 S·cm-1, 高于大多数元素掺杂的样品。其中, 0.998In2O3/0.002InNbO4样品的热电性能测试表明, 在1023 K时, 其功率因子可达到0.67 mW·m-1·K-2, 热电优值(ZT)达到最高值0.187。综上所述, 通过在In2O3中原位复合InNbO4第二相可以很好地改善In2O3基热电陶瓷的电性能, 进而调控其高温热电性能。  相似文献   

11.
SnSe是一种潜在的极具应用前景的热电材料。采用机械合金化结合放电等离子烧结的方法制备了Ag掺杂的Sn1-xAgxSe (0.005≤x≤0.03)多晶块体热电材料, 并借助XRD、SEM、电热输运测试系统研究了其物相组成、微结构与电热输运性能。XRD分析结果表明, 少量Ag(0.005≤x≤0.01)掺杂仍然能够成功制备出单相斜方结构SnSe化合物, 但随着Ag掺杂量的增加, 基体中出现SnAgSe2第二相, 且第二相含量逐渐增加。掺杂Ag大幅度提高了载流子浓度, 从而使材料的综合电输运性能(功率因子)显著提高, 当Ag掺杂量x=0.02时, 功率因子提高至4.95×10-4 W/(m·K2), 较未掺杂SnSe样品提高了36%。尽管掺杂样品的热导率均有小幅升高, 无量纲热电优值(ZT)仍获得一定改善。当Ag掺杂量x=0.02时, Sn0.98Ag0.02Se成分样品具有较高的热电优值, 并在823 K附近达到最高值0.82。  相似文献   

12.
以溶胶-凝胶法合成了PPP@Zn1-xCoxO纳米复合热电材料(x=0, 0.025), 再以放电等离子烧结制备成块体, 并对其热电性能进行了研究。由透射电镜照片发现, PPP纳米颗粒尺寸在200 nm以下。热电性能分析表明, 随着PPP添加量的增加, 赛贝克系数先增大后减小。电导率随PPP含量增加而大幅度提高。与ZnO块体材料相比, 溶胶-凝胶法合成的PPP@Zn1-xCoxO纳米复合热电材料的热导率大幅度降低, 在640 K时, 9wt% PPP的纳米复合热电材料热导率降低至5.4 W/(m·K)。电导率的增加和热导率的降低, 导致热电性能大幅度提高, 9wt%PPP@Zn0.975Co0.025O纳米复合热电材料在870 K时具有最大ZT值(0.16), 是Zn0.975Co0.025O材料的8倍。  相似文献   

13.
Mg2(Si,Sn)合金热电材料具有成本低廉、环境友好等优点, 作为一种绿色环保的中温区热电材料一直受到广泛关注。在Mg2(Si,Sn)基材料中掺杂大剂量Sb可诱发Mg空位, 从而有效降低材料的热导率, 但同时Seebeck系数也会降低。研究采用高温熔炼及真空热压法成功合成了Mg2.12-ySi0.4Sn0.5Sb0.1Zny (y=0~0.025)试样, 通过在大剂量Sb掺杂的Mg2(Si,Sn)基材料中添加Zn元素, 研究了大剂量Sb和微量Zn双掺杂对材料电声输运特性的综合影响。研究结果表明, Zn-Sb双掺杂可通过有效抑制材料电子热导率的方法大幅降低Mg2(Si,Sn)合金材料的总热导率, 与此同时明显提高掺Zn试样的塞贝克系数以弥补其电导率的损失, 维持材料较为优异的电学性能。最终, 热导率的大幅优化及电学性能的维持实现了材料综合热电性能的显著提升, 其中, 成分为Mg2.095Si0.4Sn0.5Sb0.1Zn0.025的材料在823 K下热电优值ZT达到1.42。  相似文献   

14.
固溶结合掺杂是优化材料热电性能的有效途径。本研究采用固相反应结合等离子体活化烧结成功合成了一系列单相的Mo1-xWxSeTe(0≤x≤0.5)固溶体及其Nb掺杂产物。热电输运研究表明, W固溶结合Nb掺杂显著提高了Nb2yMo0.5-yW0.5-ySeTe固溶体的载流子浓度、载流子迁移率、电导率和功率因子, 适当降低了样品的晶格热导率, 进而显著提高了材料的热电优值ZT。随着Nb掺杂量的增加, 掺杂引入的离散能级转变为连续的杂质能带, 同步提升了载流子浓度和载流子迁移率。取向性研究发现, 由于在平行方向晶格热导率较低, Nb2yMo0.5-yW0.5-ySeTe固溶体在平行烧结压力方向的ZT略优。最优组分Nb0.03Mo0.485W0.485SeTe在垂直于烧结压力和平行于烧结压力方向获得了最高ZT, 分别达到0.31和0.36(@823 K), 是目前MoSe2基热电材料获得的最好结果之一。后续通过优化掺杂元素来改善Seebeck系数和功率因子, 将有望进一步提升MoSe2基化合物的ZT。  相似文献   

15.
Mg3Sb2化合物具有良好的热电性能和成本优势, 受到研究者的广泛关注。由于Mg元素具有很高的饱和蒸汽压和化学反应活性, 因此Mg3Sb2在合成过程中含量难以精确控制。本研究利用固相反应/球磨结合放电等离子体烧结制备了不同Mg含量的Mg3(1+z)Sb2(z=0, 0.02, 0.04, 0.06和0.08)样品, 通过物相结构分析和热电性能测试, 研究了Mg含量对Mg3Sb2化合物热电性能的影响规律。结果表明, 随着名义Mg含量的增加, 实际Mg含量在Mg3Sb2化合物中由缺失状态转变为过量状态, Mg3(1+z)Sb2(z=0, 0.02, 0.04)样品存在Mg空位(${{\text{{V}'}}_{\text{Mg}}}$), 表现为p型传导; 而Mg3(1+z)Sb2 (z=0.06, 0.08)样品中存在间隙Mg($\text{Mg}_{\text{i}}^{\centerdot \centerdot }$), 表现为n型传导。Mg3(1+0.04)Sb2样品在较宽温区(室温至770 K)内保持最高的热电优值, 该样品最接近本征p型Mg3Sb2化合物的组成和热电性能。本研究表明, Mg含量对Mg3(1+z)Sb2化合物载流子类型和浓度以及迁移率具有一定的调控作用。  相似文献   

16.
SnS由低毒、廉价、高丰度的元素组成, 在热电研究领域受到广泛关注。采用机械合金化(MA)结合放电等离子烧结(SPS)工艺制备了n型SnS1-xClx(x=0, 0.02, 0.03, 0.04, 0.05, 0.06)多晶块体热电样品, 并研究了Cl-掺杂量对SnS物相、微观结构以及电热输运性能的影响。结果表明: Cl-的引入会提高电子浓度, 使SnS由本征p型转变为n型半导体。随着Cl-掺杂量的增加, n型SnS半导体室温下的霍尔载流子浓度从6.31×1014 cm-3 (x=0.03)增加到7.27×1015cm-3 (x=0.06)。x=0.05样品在823 K取得最大的电导率为408 S·m-1, 同时具有较高的泽贝克系数为-553 μV•K-1, 使其获得最大功率因子为1.2 μW·cm-1·K-2。Cl-的掺入会引入点缺陷, 散射声子, 使晶格热导率κlat由0.67 W·m-1·K-1(x=0)降至0.5 W·m-1·K-1 (x=0.02)。x=0.04样品在823 K获得了最大ZT为0.17, 相比于x=0样品(ZT~0.1)提高了70%。  相似文献   

17.
分别采用不同的熔炼、退火工艺, 结合放电等离子烧结方法制备了块状多晶In4Se3热电材料。研究了熔炼时间和退火时间对材料物相、成分、显微结构及热电性能的影响。熔炼后铸锭中存在In及InSe杂相, Se缺失量随熔炼时间的延长而增加, 使得样品载流子浓度增大, 电导率有所提高, 熔炼48 h样品ZT值相对较高。在确定熔炼工艺的基础上, 进行不同时间的退火处理后, InSe相消失, 显微结构中分布有较大尺寸的台阶状结构, 这种台阶状结构有利于降低热导率, 而对电导率无明显影响。实验结果表明: 一定程度延长熔炼时间、退火时间对提高样品的热电性能有积极作用, 其中熔炼48 h再退火96 h后的样品ZT值最高, 在702 K达到0.83, 比文献值提高约32%。  相似文献   

18.
研究了Sb掺杂对N型half-Heusler化合物Zr0.25Hf0.25Ti0.5NiSn1-xSbx (x=0、0.002、0.005、0.01、0.02、0.03)热电传输特性的影响。结果显示, 随着Sb掺杂量增加, 材料的载流子浓度提高, 电阻率降低, 尤其是低温(<300 K)电阻率下降显著, 赛贝克系数降低, 且取得最大赛贝克系数的温度向高温端移动, 最大功率因子增加~20%, 材料的热导率增大, 主要是电子热导率提高的贡献, 晶格热导率影响不大; 当Sb掺杂量较低时(x<0.01), 材料的最大热电性能优值ZT值在0.77左右, 掺杂量x=0.005的样品ZT值在整个温度区间内最优。  相似文献   

19.
PbTe基化合物是一种热电性能优良的中温区热电材料, 但铅的毒性限制了其广泛应用, 因此类似化合物SnTe引起了人们关注。但SnTe的载流子浓度较高和晶格热导率较大使其ZT值较低。本研究利用SnO歧化反应对SnTe热电性能实现了协同调控。热压烧结过程中SnO在500 ℃左右发生歧化反应生成Sn单质和单分散的SnO2颗粒, Sn单质作为自掺杂可以填充SnTe中的Sn空位, 导致载流子浓度降低: 相比于SnTe基体, SnTe-6mol%SnO样品在600 ℃下的电阻率从6.5增大到10.5μΩ•m, Seebeck系数从105增大到146μV•K-1。同时, 原位反应生成的SnO2第二相单分散于晶界处, 多尺度散射声子传播而降低晶格热导率, SnTe-6mol%SnO样品晶格热导率在600 ℃下仅为0.6W•m-1•K-1, 相比于基体下降了33%左右, 从而使SnTe体系的热电性能得到明显提高。最终, 当SnO加入量为6mol%时, 样品在600 ℃下的ZT值~1, 相比于基体提升了一倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号