首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过OM,SEM,TEM,XRD和力学拉伸实验,研究了固溶和时效热处理对Mg-12Gd-3Y-Sm-0.5Zr(质量分数,%)合金组织和力学性能的影响。结果表明,Mg-12Gd-3Y-Sm-0.5Zr合金铸态组织由α-Mg基体和含Mg5Gd相和Mg41Sm5相的粗大枝晶组成,经过固溶和时效处理后,时效析出了Mg24Y5相,Mg5Gd相演变为Mg3Gd相,固溶时效态合金纳米尺寸的长条状相的脱溶析出可有效强化合金。合金在不同状态下的室温抗拉强度为:铸态219.4 MPa、固溶态224.0 MPa和时效态299.8 MPa。  相似文献   

2.
Al-Cu-Mg-(Ag,La)合金的显微组织与力学性能   总被引:1,自引:0,他引:1  
采用金相显微镜、扫描电镜、透射电镜与力学性能测试等方法,研究Ag1 La对Al-5.3Cu-0.8Mg(质量分数,%)合金的显微组织与时效特性的影响。结果表明:添加0.1La降低铸态Al-5.3Cu-0.8Mg-(0.6Ag)合金的晶粒尺寸;但并不能明显提高挤压态Al-5.3Cu-0.8Mg合金的时效硬化;添加0.6Ag能提高挤压态Al-5.3Cu-0.8Mg合金的时效硬化能力与抗拉强度,降低185℃时的峰时效时间。这是由于Ag的添加改变基体合金的时效析出相,合金的主要强化相由片状Ω相和少量θ相组成。同时,添加0.6Ag与0.1La有助于提高Al.5.3Cu-0.8Mg合金中口相的体积分数,最终使其力学性能得到进一步改善。  相似文献   

3.
采用XRD、SEM和拉伸力学性能测试方法,分析了铸态和固溶时效态Mg-11Gd-3Y合金的显微组织和力学性能。结果表明,热处理没有改变Mg-11Gd-3Y合金相的组成,合金铸态和固溶时效态组织均由α-Mg基体、Mg_5Gd和Mg_(24)Y_5相组成。固溶时效态合金的强化机制主要为固溶强化和时效强化,其最大抗拉强度为230 MPa,比铸态合金提高了12%。  相似文献   

4.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了不同热处理对Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能的影响。结果表明:不论是铸态、固溶态,还是时效态,合金组织都主要由α-Mg基体以及稀土化合物Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12Zn(Gd,Y)组成;但铸态下合金中第二相主要为Mg5(Gd,Y,Zn),在晶内呈平行的流线状排列,晶粒粗大。通过固溶时效处理,Mg12Zn(Gd,Y)相在晶界处析出并向晶内生长,成为合金的主要强化相,其强化方式主要为固溶强化和时效强化。室温下,铸态合金抗拉强度为138 MPa,伸长率为2.16%,时效态合金抗拉强度为223 MPa,伸长率为3.94%,合金力学性能得到明显提升。  相似文献   

5.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了不同热处理对Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能的影响。结果表明:不论是铸态、固溶态,还是时效态,合金组织都主要由α-Mg基体以及稀土化合物Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12Zn(Gd,Y)组成;但铸态下合金中第二相主要为Mg5(Gd,Y,Zn),在晶内呈平行的流线状排列,晶粒粗大。通过固溶时效处理,Mg12Zn(Gd,Y)相在晶界处析出并向晶内生长,成为合金的主要强化相,其强化方式主要为固溶强化和时效强化。室温下,铸态合金抗拉强度为138 MPa,伸长率为2.16%,时效态合金抗拉强度为223 MPa,伸长率为3.94%,合金力学性能得到明显提升。  相似文献   

6.
通过OM、XRD、TEM、SEM和电子拉力试验机等,研究了固溶和时效处理对Mg-8Gd-2.5Nd-0.5Zr(质量分数,%)合金显微组织和力学性能的影响。结果表明:合金铸态组织由α-Mg基体和含Mg5Gd相、Mg12Nd相的粗大枝晶组成,经过热处理后,合金中方块状颗粒相明显增多,且分布在晶界处;固溶时效态合金析出的纳米尺寸方块相可有效强化合金。时效态合金中β'析出相形态类似多个纺锤形相连接而成,相互之间的夹角呈120°,且具有周期结构。铸态、固溶态和时效态合金在不同状态下的室温拉伸强度分别为:189.3、201.4和251.1MPa。  相似文献   

7.
通过OM、XRD、TEM、SEM和电子拉力试验机等,研究了固溶和时效处理对Mg-8Gd-2.5Nd-0.5Zr(质量分数,%)合金显微组织和力学性能的影响。结果表明:合金铸态组织由α-Mg基体和含Mg5Gd相、Mg12Nd相的粗大枝晶组成,经过热处理后,合金中方块状颗粒相明显增多,且分布在晶界处;固溶时效态合金析出的纳米尺寸方块相可有效强化合金。时效态合金中β'析出相形态类似多个纺锤形相连接而成,相互之间的夹角呈120°,且具有周期结构。铸态、固溶态和时效态合金在不同状态下的室温拉伸强度分别为:189.3、201.4和251.1MPa。  相似文献   

8.
采用光学显微镜、扫描电镜、X射线衍射仪、XHB-3000型布氏硬度计和万能电子拉伸实验机等研究了Mg-11Gd-3Y-0.8Ca-0.5Zr合金的最佳热处理工艺和热处理对合金显微组织及性能的影响。结果表明:合金的最佳固溶工艺为485℃×16 h+505℃×16 h,时效工艺为225℃×12 h。铸态合金主要由初生相α-Mg基体和大量处于晶界处网络状的Mg5Gd、Mg24Y5、Mg2Ca相组成。经固溶时效后,相种类没有变化,但晶界变得清晰,第二相的形貌显著改变,呈颗粒状和短棒状均匀分布在基体上,组织得到明显改善,合金的力学性能显著提高,时效态合金的抗拉强度、屈服强度及硬度均显著优于铸态合金,分别由原来的217 MPa、185 MPa和92 HB增加到265 MPa、228 MPa和121 HB,这主要归功于时效沉淀强化的作用。  相似文献   

9.
通过金相观察、X射线衍射、透射电镜、硬度测试和拉伸性能测试等实验方法,研究添加不同含量的Nd元素对Mg-6Gd-2.5Y-0.5Zr合金的显微组织、时效硬化行为以及峰值时效下力学性能的影响。结果表明:随着Nd含量的增加,铸态合金中第二相Mg_5(Gd/Y)和Mg_(24)(Gd/Y)_5的含量显著增加,合金经固溶淬火后,时效强化现象越来越显著,峰值时效时间缩短,峰值时效硬度明显增加。当Nd元素的含量为1.0%(质量分数),合金的力学性能最佳,Mg-6Gd-2.5Y-1Nd-0.5Zr的抗拉强度为289 MPa,屈服强度为241 MPa。时效硬化行为和峰值时效力学性能得到改善,其主要是因为加入Nd元素后,在α-Mg基体中形成大量的β′相,且β′相明显细化,β′相的形貌也发生改变。  相似文献   

10.
采用OM、SEM、EDS、TEM和SAED等技术研究了Mg-12Gd-2Y-0.5Sm-0.5Sb-0.5Zr合金在铸态、时效态及固溶态的显微组织变化。结果表明,与铸态合金显微组织相比,时效态合金析出相更加细小弥散;铸态合金析出相有α-Mg、Mg5Gd相和Mg24Y5相,固溶态有α-Mg、Mg3Gd相和Mg24Y5相,时效态有α-Mg,Mg41Sm5,β'相。β'相形态为多个纺锤形相联结而成,相互夹角呈120°,具有周期结构。  相似文献   

11.
采用光学显微镜、扫描电镜、X射线衍射仪和万能力学试验机等研究了固溶和时效热处理对Mg-12Gd-Y-0.5Zr合金显微组织和力学性能的影响。结果表明:Mg-12Gd-Y-0.5Zr合金铸态组织主要由α-Mg基体和沿晶界呈不连续网状分布的Mg_5(Gd,Y)共晶相组成,经固溶时效处理后,合金组织主要由分布于晶粒内部和晶界处的颗粒状Mg_5Gd、Mg_(24)Y_5相组成,有效地提高了合金强度。在不同状态下合金的室温抗拉强度为:铸态191.5 MPa、固溶态213.6 MPa以及时效态269.7 MPa。经固溶时效处理后,塑性有明显的改善。  相似文献   

12.
采用金相显微分析、X射线衍射以及显微硬度测试等方法,研究了Mg-10Ho二元合金铸态及热处理后的显微组织及力学性能.结果表明,加入稀土Ho后晶粒得到明显细化,常温与高温下力学性能大幅提高;铸态Mg-10Ho合金的组织主要为α-Mg固溶体及少量Mg24Ho5共晶相;热处理后,时效硬化效果明显,合金力学性能有所改善,主要是由于亚稳的β”相的时效析出.  相似文献   

13.
通过常规金属型铸造方法制备了Mg96Gd3Cu1(a%)合金。利用光学显微镜、X射线衍射仪、扫描电子显微镜和力学性能试验机等对合金的铸态和热处理态显微组织及力学性能进行了系统的分析。研究结果显示,铸态的合金中形成了14H类型的长周期堆垛有序结构相,固溶处理时,合金晶界处的Mg5Gd相溶解并析出层片状的14H长周期结构相。时效处理后合金性能得到较大的提高。  相似文献   

14.
采用透射电镜、扫描电镜、能谱分析、X射线衍射及力学性能等测试手段,研究热处理工艺对水冷铸造的Mg-8Gd-3Y-1Nd-0.5Zr(质量分数)合金显微组织、力学性能和耐腐蚀性能的影响。合金铸态显微组织由α-Mg、Mg(Gd,Y)相、富Zr小颗粒相和β-Mg_(24)Y_5网状共晶组成。在520℃固溶24 h后,合金中共晶相固溶进基体,固溶演变过程为α-Mg+β-Mg_(24)Y_5相+Mg(Gd,Y)→过饱和α-Mg固溶体+Mg(Gd,Y)相。225℃时效,合金的析出序列为Mg(S.S.S.S)→β″(DO19)→β′(CBCO)→β_1(FCC)→β(FCC),时效24 h达到峰时效态,合金的室温抗拉强度达到231MPa,伸长率为3.4%。时效处理能提高合金耐腐蚀性能,225℃时效72 h时合金析出稳定β(FCC)相,平均析氢速率最小,为0.22 mL/(cm~2·h),合金的耐腐蚀性能最强。  相似文献   

15.
采用熔炼铸造法制备了添加0~2%Zn(质量分数)的Mg-10Gd-3Sm-0.5Zr合金,通过X射线衍射、扫描电镜和拉伸性能测试等分析了Zn对铸态Mg-10Gd-3Sm-0.5Zr合金组织与性能的影响。结果表明:铸态Mg-10Gd-3Sm-0.5Zr合金由粗大枝晶α-Mg基体和晶界处半连续分布稀土相Mg41(Sm,Gd)5和Mg5Gd(Sm)组成,加入Zn元素后,在合金中产生了新相(Mg,Zn)3(Sm,Gd)1;铸态Mg-10Gd-3Sm-xZn-0.5Zr合金室温拉伸力学性能随着Zn元素含量的增加先升高后降低,当Zn的添加量为1%时,综合力学性能最好,其抗拉强度、屈服强度、伸长率分别为215 MPa、173 MPa和5.5%;合金的断裂方式主要为脆性断裂,加入Zn元素后有向韧性断裂转变的趋势。  相似文献   

16.
采用光学显微镜、扫描电镜、X射线衍射仪和拉伸试验机等研究了不同热处理状态下Mg-12Gd-1Zn-0.5Zr合金的物相、显微组织和力学性能.结果 表明:铸态Mg-12Gd-1Zn-0.5Zr合金的组织主要由α-Mg基体、Mg5(Gd,Zn)、Mg5Gd以及Mg10ZnGd(18R-LPSO)相构成.固溶处理后,LPSO...  相似文献   

17.
采用光学显微镜、扫描电镜、透射电镜、X射线衍射仪、维氏硬度测试仪和万能力学试验机等研究了固溶和时效热处理对铸造Mg-5Y-2Nd-3Sm-0.5Zr合金组织与力学性能的影响。结果表明:铸态合金组织主要由α-Mg基体,Mg24Y5、Mg41Nd5和Mg41Sm5相组成;经固溶处理,铸态合金中粗大的第二相固溶于α-Mg基体中,时效处理后有新的纳米级第二相析出;铸造Mg-5Y-2Nd-3Sm-0.5Zr合金的最佳热处理工艺为525℃下保温10 h,然后225℃下时效处理12 h,热处理后合金具有最优良的力学性能,硬度、抗拉强度、屈服强度和伸长率分别为124.8 HV,296.9 MPa,255.4 MPa和5.78%。  相似文献   

18.
在大气环境下采用普通中频感应电炉熔炼制备了Cu-Cr合金,研究了铬对标准阴极铜组.织与力学性能的影响,Cr的加入量分别为0.30%、0.5 3%、0.76%和0.99%.结果表明,在本实验条件下,Cr可以有效地加入到Cu液中.铸态及固溶时效Cu-Cr合金中只存在α-Cu相与Cr相.铸态时部分Cr溶于基体中,部分Cr以第二相形式存在;固溶时效后基体中可分解析出更多弥散分布的Cr相.Cr元素对纯铜有强化作用,合金的铸态和热处理态试样的拉伸强度及硬度均随Cr元素加入量的增大而增加.固溶时效热处理能有效提高铸态Cu-Cr合金的力学性能.  相似文献   

19.
借助OM、XRD、SEM和电子拉力试验机,对时效态Mg-(5%~15%)Gd合金的显微组织及力学性能进行了研究。结果表明:随着稀土元素Gd含量的增加,Gd对Mg-Gd合金铸态组织的细化作用增强,并生成高熔点的Mg5Gd相。经过固溶时效处理后,合金有新相Mg3Gd生成。合金的屈服强度及高温抗拉强度显著提高,伸长率下降。断口具有大量的解理台阶及撕裂棱,表现为层片状。随着Gd含量的增加,脆性相提高合金的强度,降低合金的塑性。  相似文献   

20.
在电阻炉中采用熔剂保护熔铸Mg-3Sn-1Y(质量分数,%)合金,并通过Olympus GX71光学显微镜(OM)、装备能谱(EDS)的FEI QUANTA 400型扫描电镜(SEM)、RigakuD/max-3C型X射线衍射(XRD)、TUKON2100维氏型硬度计和CRY-2P型DTA差热分析仪等分析合金的铸态组织、固溶及时效热处理对组织和时效硬化的影响。结果表明,Mg-3Sn-1Y合金铸态组织由α-Mg枝晶、枝晶间断续网状Mg2Sn相和弥散分布的细小颗粒及短棒状MgSnY相组成。固溶处理后Mg2Sn相已完全固溶,而具有高温稳定性的MgSnY相依然分布在基体中。加入Y元素可以提高合金的高温稳定性。Mg-3Sn-1Y合金具有典型的时效硬化特征,时效温度提高,一定程度上有利于时效峰出现;但时效温度过高,基体组织的长大会降低析出强化作用,延缓峰值硬度的出现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号