首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni–P matrix, ternary Ni–W–P and Ni–P–ZrO2 coatings, and quaternary Ni–W–P–ZrO2 coatings were deposited using electroless method from a glycine bath. Their corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS) for various immersion times in a 3.5% NaCl solution. From among the investigated coatings, the ternary Ni–W–P coatings show the highest resistance to corrosion in the first hour of exposure to the 3.5% NaCl medium. An addition of ZrO2 adversely affects the performance of both the Ni–P coatings and the Ni–W–P coatings. For all the coatings, including the ones containing tungsten, a marked decrease in pore resistance (Rpor) over time is observed. This means that their corrosion resistance and capacity to protect the substrate decline. On the other hand, after 24 h immersion in the 3.5% NaCl solution the Ni–W–P coating shows the highest low‐frequency impedance modulus (|Z|f = 0.01 Hz). As regards corrosion resistance, the Ni–P coatings and the Ni–W–P coatings perform best.  相似文献   

2.
In the present study, the quaternary Ni–Mo–Cr–P alloy coatings were deposited on copper alloy by an electroless deposition process. Crystallization behavior and the effect of heat‐treatment on hardness and corrosion resistance of Ni–Mo–Cr–P deposits were detailedly investigated. X‐ray diffraction (XRD) analysis shows that as‐deposited Ni–Mo–Cr–P coatings are Ni–Mo–Cr–P solid solution and mixed crystal structure; the trend of microcrystallinity increases with the introduction of additional types of metal element; Ni–Mo–Cr–P alloy coatings start to occur in the crystallization with the heat‐treatment temperature increasing. With an increase in the annealing temperature, the hardness improves and reaches the maximum value at 500 °C. Further, it is found that Ni–Mo–Cr–P coatings have superior corrosion resistance than Ni–P and Ni–Mo–P deposits after the analysis of electrochemical measurements. Moreover, corrosion resistance increases before annealed at 400 °C, but heat‐treatment at higher temperatures has a negative effect on the corrosion resistance of Ni–Mo–Cr–P alloy coatings.  相似文献   

3.
《金属精饰学会汇刊》2013,91(4):180-185
Abstract

Ni–P gradient coatings, gradient Ni–P coatings with rare earth (RE) Yttrium (Y) (coating A) and non-gradient Ni–P coatings with RE Yttrium (coating B) were prepared separately on LY12 aluminium alloy by an electroless plating technique. The corrosion resistance of the three kinds of coatings in different corrosive environments were evaluated by corrosion weight loss rate and polarisation curve analysis. The Ni–P gradient coating had a thickness of about 40?μm, with phosphorus content gradually increasing from 6.27?wt-% in the innermost layer (crystalline structure) to 14.74?wt-% in the outermost layer (amorphous structure), thus protecting the substrate from corroding. Furthermore, the introduction of RE Yttrium (Y) into the Ni–P matrix can correspondingly improve the corrosion resistance of the coatings. Consequently, the corrosion resistance of the coatings in acidic and alkaline environments is characterised by coating A>coating B>Ni–P gradient coating, while in neutral environment is characterised by coating A>Ni–P gradient coating>coating B.  相似文献   

4.
Zn–Ni/Ni and Ni/Zn–Ni compositionally modulated multilayer (CMM) coatings were prepared by dual‐bath technique. The effects of layers number and sublayers order were studied. Specially, the effect of different sublayers thickness ratios with the same multilayer period (λ) on the corrosion resistance of the CMM coatings was investigated in detail. Results showed that the corrosion resistance of Ni/Zn–Ni (Zn–Ni alloy sublayer as the top layer) CMM coating was better than that of Zn–Ni/Ni (Ni sublayer as the top layer) CMM coating. The 6‐layer CMM coating with the layer thickness ratio of Ni/Zn–Ni = 0.8:1.2 (λ = 2 µm) has the best corrosion resistance.  相似文献   

5.
Carbon nanotubes (CNTs) have high chemical stability, unique hollow nanotube structure, and are believed to be ideal materials for fabricating composites. In this study, Ni–P and Ni–P‐CNT composite coatings were fabricated by electroless plating. Scanning electron microscopy was used to characterize the coatings. The corrosion behavior of Ni–P and Ni–P‐CNT coated samples were evaluated by polarization curves and electrochemical impedance spectroscopy in 3.5 wt% NaCl and 0.1 M H2SO4 aqueous solutions at room temperature. The results indicated that incorporation of CNTs in the coating significantly increased corrosion resistance. The role of CNTs in improvement of corrosion resistance of the coating was also discussed.  相似文献   

6.
The corrosion behaviors of electroless Ni–P coatings deposited on carbon steel in sulfur‐bearing solutions were investigated by weight gain test and scanning electron microscopy. The results indicate that the corrosion rate of electroless Ni–P coating was directly related to the sulfur content, immersion time, and test temperature. The corrosion rate increased with the prolonged immersion time. Increasing the temperature can markedly increase the corrosion rate of electroless Ni–P coating. The electroless Ni–P coating had a better corrosion resistance than 316L stainless steel against Cl? corrosion in sulfur‐bearing solution.  相似文献   

7.
The nano-composite coating of Ni–P/Au was obtained by adding gold nanoparticles to the Ni–P electroless plating solutions. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and microsclerometer were used to characterize the compositions, structures, morphologies and hardness of the coatings, respectively. The Ni–P electroless coating contains 11.0 wt.% P while the composite coating of Ni–P/Au contains 9.85 wt.% P and 2.38 wt.% Au. The composite coatings, which contain gold nanoparticles, exhibit better properties of hardness, corrosion resistance and uniformity than the particle-free coatings. The coatings deposited from an electroless bath have the increased hardness after heat treatment due to the transformation of amorphous phase Ni–P to crystalline phase Ni3P. The composite coating with gold nanoparticles has bigger hardness value than Ni–P coating.  相似文献   

8.
化学镀Ni—P—聚四氟乙烯复合镀层及其性能   总被引:3,自引:0,他引:3  
向一种含双络合剂的化学镍液中加入PTFE(聚四氟乙烯)浓缩乳液,成功获得了PTFE含量为25%-30%vol的Ni-P-PTFE复合镀层。应用X-Ray衍射仪、扫描电子显微镜、差热分析等对镀层组织结构和性能进行了测定。结果表明,这种镀层为非晶态结构,与基体结合良好,具有低的孔隙率和低的摩擦系数,是一种耐蚀、自润滑的表面复合材料镀层。  相似文献   

9.
Abstract

A conversion coating treatment using cerium salts was developed for the surface sealing of electroless nickel–phosphorus (Ni–P) coatings on carbon fibre reinforced aluminium (Cf/Al) composites. The corrosion resistances of uncoated and coated materials (i.e. the Ni–P coating, the Ce conversion coating and Ce sealed Ni–P coatings) were evaluated in 3·5 wt-%NaCl solution using potentiodynamic polarisation and electrochemical impedance spectroscopy. Ce sealed Ni–P coating showed the highest corrosion resistance and clearly improved the overall corrosion resistance of Cf/Al composites. Thus, the Ce sealed Ni–P coating had no obvious microcracks that were generally evident in the more conventional Ce conversion coatings. This is presumed to occur because the electroless nickel surface is relatively homogeneous, compared with the Cf/Al composite surface on which different local coating thicknesses would encourage increased microcrack formation. X-ray photoelectron spectroscopy analysis showed that the Ce conversion coating mainly contained both Ce3+ and Ce4+ species; however, Ce4+ species were the dominant oxidation state on Ce sealed Ni–P coatings.  相似文献   

10.
The effect of cerium ion on the formation, morphology, composition, and corrosion behavior of Ni–cerium oxide coatings was investigated by SEM, FESEM, XRD, EDS, XPS, EIS, and potentiodynamic polarization. The extremely highest corrosion resistant coating was obtained when the cerium ion concentration in the plating bath was 16 mM. It has been observed that the presence of cerium ion in the plating bath led to changes in the morphology of the coating from pyramid nodular structure to coaxial structure. By adding cerium ion to the plating bath, a considerable grain refinement in the nanometer region was observed.  相似文献   

11.
介绍了在汽车、航空航天等行业中得到广泛应用的钢铁零件电镀Zn-Ni合金镀层,以及往碱性、氯化物等锌镍合金镀液中加入Fe、Co、Mn、Ce、P等第三种元素所获得的锌镍三元合金镀层,具有更优良的耐腐蚀性、催化性等性能的情况。介绍了往Zn-Ni合金镀液里加入氧化硅、氧化铈、氧化钛、氧化铝、碳化硅等纳米颗粒的进展情况,发现含有纳米颗粒的锌镍复合镀层具有耐腐蚀性、耐磨损性、热稳定性更好,硬度更高等优点。梳理了2016年以来在Zn-Ni合金电镀中添加第三种元素和纳米颗粒的多层镀层研究新进展。从Zn-Ni单一镀液中沉积Ni-P和Zn-Ni合金多层镀层时,在低电流密度下沉积出Ni-P层;在较高电流密度下,沉积出含3.2%P的Zn-Ni-P合金镀层,这种多层镀层可以大幅度提高钢铁零件的防腐蚀性能。介绍了在含12%Ni的Zn-Ni镀层上镀覆Ni-Co-SiC纳米复合镀层的情况,这种多层结构既可以提高镀层的结合力,又可提高其在3.5%NaCl溶液中的耐腐蚀性能。该复合镀层是一种硬度高、磨损量低的新型Zn-Ni合金复合镀层。  相似文献   

12.
In order to obtain a high quality protective plating coating on Mg–16Li–5Al–0.5RE alloy, a zinc dipping technique at room temperature was investigated. The zinc dipping technique included two immersion processes, the primary immersion process and the secondary immersion process. Primary zinc transition layers (PZTLs) and secondary zinc transition layers (SZTLs) were obtained after the primary and secondary immersion processes, respectively. The polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X‐ray diffraction (XRD) were employed to characterize PZTLs and SZTLs. The results indicated that immersion time had obvious effects on PZTLs and SZTLs, the optimum primary immersion time and secondary immersion time were 5 min and 30 s, respectively. Then nickel‐plating coating deposited on the SZTL of Mg–16Li–5Al–0.5RE alloy was investigated via EDS, SEM, polarization curves, and EIS. The results demonstrated that the nickel‐plating coating obviously improved corrosion resistance of Mg–16Li–5Al–0.5RE alloy and had good adherence property with the alloy because of the presence of zinc transition layer on the alloy.  相似文献   

13.
氧化铝陶瓷基板化学镀铜工艺优化   总被引:1,自引:1,他引:0  
郑强  蔡苇  陈飞  周杰  兰伟  符春林 《表面技术》2017,46(4):212-216
目的化学镀铜是氧化铝陶瓷基板金属化的一种重要手段,为了进一步优化氧化铝陶瓷基板化学镀铜工艺,研究了化学镀铜液配比(尤其是镀液中铜离子和甲醛含量)对氧化铝陶瓷覆铜板微结构和导电性的影响。方法在对氧化铝陶瓷基板经过前期处理后,采用化学镀铜法在基板上镀铜。采用X射线衍射仪、光学显微镜对氧化铝基板上的化学镀铜层物相和形貌进行观察。采用覆层测厚仪、四探针测试仪对化学铜镀层的膜厚和方阻进行测量。结果 XRD结果表明,不同配比镀液得到的化学镀铜层均具有较好的晶化程度,镀液中甲醛和铜含量较低的镀液可制备出晶粒更为细小的化学镀铜层。甲醛和铜离子含量均较高时,沉积速度过快,使镀铜层的均匀性和致密性不佳。但当甲醛含量较高、铜离子含量较低时,沉积速度适中,从而获得了均匀性和致密性较好的镀铜层,同时这种镀层具有良好的导电性。结论采用表面活性化学镀铜工艺,当镀液中甲醛浓度为0.25 mol/L和硫酸铜质量浓度为1.2 g/L时,无需高温热处理,即获得了均匀性和致密性俱佳的铜镀层,可满足覆铜板的使用要求。  相似文献   

14.
In order to improve the corrosion and erosion–corrosion resistance of 316L stainless steel in engineering application, two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano‐SiC and Ni/nano‐SiO2 predeposited by brush plating, respectively, and a subsequent surface alloying with Ni–Cr–Mo–Cu by double glow process. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were performed on the two kinds of composite alloying layer using 10 wt% HCl solution to assess the corrosion behavior. Erosion–corrosion tests were carried out by erosion–corrosion test rig in acidic flow and acidic slurry flow for test time of 20 h at four different rotational speeds. Results of electrochemical tests indicated that the corrosion resistance of composite alloying layer with brush plating Ni/nano‐SiO2 particles interlayer approximated to that of single Ni‐based alloying layer, whereas the corrosion resistance of the composite alloying layer with brush plating Ni/nano‐SiC particles interlayer was apparently inferior to that of Ni‐based alloying layer in 10 wt% HCl solution at static state. Under the conditions of acidic flow and acidic slurry flow, the mass losses of tested samples increased with increase in the time of erosion–corrosion tests and the rotational speeds of samples. The mass losses of composite alloying layer with brush plating Ni/nano‐SiO2 particles interlayer were lower than that of single Ni‐based alloying layer at all rotational speeds, except at 1.88 m/s in acidic flow. The mass losses of composite alloying layer with brush plating Ni/nano‐SiC particles interlayer were higher than that of single Ni‐based alloying layer at all rotational speeds, but were obviously lower than that of AISI 316L stainless steel. The influences of second phase on the corrosion and erosion–corrosion of the two kinds of composite alloying layer were discussed in this paper.  相似文献   

15.
稀土对电沉积Ni-P合金镀层显微组织的影响   总被引:9,自引:0,他引:9  
研究了在镀液中添加稀土元素后Ni P合金镀层显微组织的变化。X射线衍射及透射电镜分析结果表明 ,在镀液中添加一定量的稀土元素 ,明显地促进了Ni P合金微晶组织向非晶态组织转变 ,从而提高Ni P合金镀层的耐蚀性。电化学极化曲线测试结果表明 ,稀土元素能够促进电沉积过程的阴极极化。由于稀土离子的特性吸附抑制了合金原子在电极界面的正常形核 ,因而促进了非晶组织的形成。  相似文献   

16.
Cr-Ni STAINLESS steel has been widely applied invarious industries for its promising mechanicalproperties and corrosion resistance at elevatedtemperature.But it's vulnerable in highly corrosiveenvironments with both oxygen and sulfur,such asSOa-Oa mixture gaseous.A number of studies claimed that the corrosionaspect of Fe-Cr-Ni alloy in SO2or62atmospherefollows Wagner's rule.The corrosion mechanism isassociated with mutual diffusion of ions of base metaland corrosion media in the scale[…  相似文献   

17.
Ni-P/Al2O3化学复合镀工艺研究   总被引:4,自引:0,他引:4  
采用正交设计法对Ni-P/Al2O3化学复合镀工艺进行了优化。研究了镀液成分,工艺参数对复合镀层厚度,显微硬度,耐蚀性,耐磨性的影响,结果表明,Ni-P/Al2O3化学复合镀层的显微硬度,耐磨性优于Ni-P化学镀层的,弥散分布的Al2O3颗粒能显著减缓复合镀层在较高温度下的软化趋势。  相似文献   

18.
Metals and Materials International - Electroless Ni–B coatings using DMAB-reduced plating baths at different pH conditions were formed on AISI/SAE 1045 carbon steel. Substrates were...  相似文献   

19.
Electroless Ni? P? Al2O3 composite coatings have been synthesized on mild steel shafts using surfactant cetyltrimethyle ammonium bromide (CTAB) as dispersant. The effects of the surfactant on the alumina dispersion, weight fraction in coatings, and corrosion resistance of the composite coatings under salt spray test were investigated. Results showed that alumina dispersion was improved, whereas weight fraction was decreased, with the increasing concentration of the dispersant CTAB. The corrosion resistance of the composite coatings was found to increase with the increase in CTAB concentration up to a certain optimum of 20 mg/L, beyond which a decreasing trend of corrosion resistance was observed under salt spray test. Compared with Ni? P coating, all the Ni? P? Al2O3 composite coatings showed improved corrosion‐resistant properties.  相似文献   

20.
添加稀土元素对Ni-P/PVDF化学复合镀层耐蚀性的影响   总被引:1,自引:0,他引:1  
在化学镀Ni-P/PVDF合金镀液中添加稀土元素Y3+和La3+制备Ni-P/PVDF(RE)复合镀层,用电化学腐蚀测试系统测试复合镀层的耐蚀性,研究了稀土元素的添加量对镀层耐蚀性能的影响。结果表明,在基础镀液中加入适量稀土元素后,所获得的Ni-P/PVDF(RE)复合镀层的晶粒较Ni-P/PVDF镀层更为细小,表面更加均匀和致密;镀层的耐蚀性随着稀土元素加入量的增加呈现先增强后减弱的趋势;在稀土元素的添加量为0.1g/L时,复合镀层的耐蚀性最好。在PVDF微粒和稀土元素的共同影响下,进一步提高Ni-P/PVDF(RE)镀层的耐蚀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号