首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
柔性直流电网作为新能源并网的有效手段,要求能够可靠开断直流故障电流。直流电网中配置的多种类型故障限流设备间的故障保护时序配合亟须研究。文中基于直流电网直流线路双极短路故障,研究了故障限流器、直流断路器、半桥全桥混合型模块化多电平换流器以及DC/DC变换器这几类多类型故障限流设备的故障保护时序配合。针对包含环网状以及辐射状结构的复合型多端直流电网系统中的不同区域,配置不同类型的故障限流设备,同时采用检测故障电流变化率的方法判断直流断路器是否可靠动作。根据不同的故障区域,提出了相应的故障限流设备间的保护时序配合方案,并且考虑了部分限流设备如直流断路器拒动后其他限流设备的动作逻辑。在PSCAD/EMTDC仿真中验证了提出的直流电网中多类型限流设备保护时序的可靠性和有效性。  相似文献   

2.
柔性直流输电网用新型高压直流断路器设计方案   总被引:13,自引:7,他引:6  
基于柔性直流的多端直流输电和直流电网技术是解决中国新能源并网和消纳问题的有效技术手段之一,而高压直流断路器是构建直流电网的核心设备之一。从多端直流系统发生直流侧短路故障的机理及故障电流的发展趋势入手,以舟山5端柔性直流输电工程为例,分析了发生最严酷短路故障时,直流母线上故障电流的特性,基于分析结果提出了直流电网对直流断路器的需求;结合对现有直流断路器技术路线的对比分析,提出了一种适用于柔性直流输电网的新型快速直流断路器技术方案,并通过仿真分析验证了所提出的新型直流断路器能够满足柔性直流输电网快速切除故障电流的需求。  相似文献   

3.
直流断路器是解决柔性直流电网直流侧故障处理难题的有效手段,而混合式直流断路器是目前最为成熟的直流断路器技术路线之一。柔性直流电网直流侧故障发展速度快且过程复杂,研究该场景下混合式直流断路器的暂态电流特性对于断路器设计研制有着重要参考价值。在考虑短路故障后柔性直流电网真实控制保护逻辑和交、直流断路器动作时序的情况下,分析了直流断路器暂态电流流通路径的时变特性,推导了暂态电流各发展阶段的表达式,给出了断路器各支路暂态电流应力典型波形及柔性直流电网主回路参数对其影响规律,为直流断路器中绝缘栅双极性晶体管(insulated gate bipolar transistor,IGBT)器件的选型和并联数设计提供了依据。同时,针对直流断路器主支路暂态电流应力严酷且尚无有效改善方法的问题,提出了一种基于换流站内阻尼电阻的直流断路器暂态电流抑制方法。电磁暂态仿真结果表明,所提出的方法可有效抑制故障下的直流断路器主支路暂态电流。  相似文献   

4.
直流断路器是解决柔性直流电网直流侧故障处理难题的有效手段,而混合式直流断路器是目前最为成熟的直流断路器技术路线之一。柔性直流电网直流侧故障发展速度快且过程复杂,研究该场景下混合式直流断路器的暂态电流特性对于断路器设计研制有着重要参考价值。在考虑短路故障后柔性直流电网真实控制保护逻辑和交、直流断路器动作时序的情况下,分析了直流断路器暂态电流流通路径的时变特性,推导了暂态电流各发展阶段的表达式,给出了断路器各支路暂态电流应力典型波形及柔性直流电网主回路参数对其影响规律,为直流断路器中绝缘栅双极性晶体管(insulated gate bipolar transistor,IGBT)器件的选型和并联数设计提供了依据。同时,针对直流断路器主支路暂态电流应力严酷且尚无有效改善方法的问题,提出了一种基于换流站内阻尼电阻的直流断路器暂态电流抑制方法。电磁暂态仿真结果表明,所提出的方法可有效抑制故障下的直流断路器主支路暂态电流。  相似文献   

5.
张北柔性直流电网换流阀故障穿越策略与保护定值优化   总被引:1,自引:0,他引:1  
不同于以往端对端柔性直流工程,应用直流断路器的柔性直流电网要求直流线路故障时换流站可实现故障穿越。文中以张北柔性直流电网工程为背景,首先,建立了直流线路故障时换流阀暂态电流的数学模型;然后,基于传统阀控过流保护策略,分别提出了保证换流阀故障穿越能力的定值设计方法和保证换流阀安全性的定值设计方法,解决了传统的阀控过流保护策略无法兼顾直流线路故障下换流阀的故障穿越能力要求和站内故障时换流阀的安全性要求的问题;最后,提出了基于分桥臂闭锁的新型阀控过流保护策略,并设计了详细的动作时序。在PSCAD中搭建张北柔性直流电网仿真模型,验证了所建立数学模型的准确性和所提出策略的有效性。  相似文献   

6.
直流电网是应对远距离大容量输电、新能源并网及消纳等问题的有效手段,然而其低阻尼特性、故障发展速度快的特点使得其隔离故障困难,研究提升直流电网故障清除能力具有重要意义。本文基于电网中直流断路器的配置要求,提出了一种基于换流站节点类型的直流断路器配置方法,其次介绍了不同故障情形时该配置方法中直流断路器的动作时序、重合闸策略,并介绍了输电线路保护判据及与换流站协调配合的措施。最后在PSCAD/EMTDC中搭建三端混合仿真模型,对本文所提配置方法与传统的配置方法下的故障进行仿真对比分析,仿真结果表明,所提配置方法能够快速隔离高压直流电网中的故障,减少停电范围,提高供电可靠性,可作为实际系统的一种可行方案。  相似文献   

7.
王威儒  宋祯子 《现代电力》2022,39(1):104-112
高压直流(high voltage DC,HVDC)电网是连接可再生能源与交流主网的主要载体,直流故障后的恢复速度对整个交直流电网的稳定性有重要影响。基于多端口电感耦合型高压直流限流断路器,提出一种与直流电网换流器控制策略相配合的快速重合闸策略。介绍了多端口限流断路器的拓扑结构,分析了换流器控制策略对故障隔离后直流电压的影响,并对限流断路器的重合闸时序进行了选择,形成了与风电场等弱交流系统连接的换流器-断路器协调配合重合闸的控制策略及逻辑流程。在4端双极直流电网仿真模型中,验证了所提重合闸策略具有冲击电流较低,故障恢复时间较短的优势。  相似文献   

8.
故障限流技术是实现柔性直流电网保护和故障隔离的重要过渡手段。基于柔性直流电网的故障特征,结合国内外研究成果,从交流侧限流、换流器限流以及直流侧限流3个方面分析了柔性直流电网各类限流技术和方法的原理及性能,对相关限流技术和方法进行了仿真测试和比较。基于对比分析结果,提出了一种改进的电感型限流电路拓扑。所提出的限流电路能够有效抑制故障电流,在配合直流断路器开断故障的情况下,可加速故障电流衰减。最后探讨了未来直流电网故障限流技术可能的研究方向。  相似文献   

9.
混合式直流断路器是柔性直流电网的重要组成部分,用于实现直流侧故障隔离,但现有拓扑大多不具备故障限流能力,且成本较高。对此,该文提出一种新型限流式混合直流断路器拓扑,其具备主模态、限流模态及断路模态3种工作模态,能够灵活应对直流电网不同异常状况。该拓扑主要采用晶闸管实现故障电流换路,大大减少IGBT的使用量以降低断路器成本,同时配合电容进行限流电感与避雷器的投切,以实现故障限流并提高分断速度。此外,该文针对所提出拓扑的工作过程进行详细解析和理论推导,基于PSCAD/EMTDC在单端等效和四端直流电网环境下进行仿真验证,并与现有典型拓扑进行对比分析,仿真结果证明了所提直流断路器拓扑的可行性和优越性。  相似文献   

10.
柔性直流电网在可再生能源并网和区域电网互联领域有重要应用前景,但是故障电流峰值随着系统端数和容量提高不断增长,进而直流断路器成本也进一步抬高。传统方法仅使用单一的故障线路上断路器清除故障,文中基于直流电网的空间互联结构,提出多断路器配合清除故障方案。由于多支相邻断路器投入分担故障能量,降低了对故障线路断路器的需求。进一步地,提出辅助限制线路震荡的断路器限流控制方法。基于张北直流电网提出多断路器配合的主保护、后备保护和重合闸方案。仿真结果表明,断路器主保护耗能减少18.8%~25.2%,系统恢复时间减少36%~44.8%。  相似文献   

11.
提出一种不依赖直流断路器的直流电网架构和相应的控制保护策略。根据电压等级和端口特征,将直流电网划分为若干子系统,通过在子系统间的连接线上串入故障隔离设备,即可不依赖直流断路器,实现直流故障的就地处理,故障子系统的隔离及重启过程不影响健全子系统正常的功率传输。相应的功率调节策略和站间通信分层设计方案,可以有效降低定电压控制换流站的过负荷风险及站间通信系统的复杂度。PSCAD/EMTDC环境下的仿真结果验证了所提出的直流电网和对应控制保护策略的有效性。  相似文献   

12.
直流电网中,采用高压直流断路器切除故障线路能够有效清除直流故障,但现有的直流断路器投资成本高,系统正常运行时电力电子器件冗余。文中提出一种新型多端口直流断路器(multiport DC circuit breaker,MP-DCCB)拓扑,采用单个主断路器保护多条直流线路,利用通流能力大的晶闸管作为主断路器和直流线路间的控制单元,有选择性地切断故障线路。然后,设计了能够吸收限流电感能量的转移支路来降低避雷器需吸收的能量,并对MP-DCCB断路、耗能以及重合闸阶段控制方式及电气过程进行了理论解析,建立了等效数学模型,研究电压电流应力及经济特性与MP-DCCB关键参数的关系。最后,在PSCAD/EMTDC中搭建四端双极直流电网进行仿真验证,MP-DCCB能够有效降低断路器投资成本,具备应用于柔性直流电网的工程价值。  相似文献   

13.
随着直流电网技术的广泛运用,直流断路器作为关键保护设备已成为相关领域研究重点.提出一种基于电压钳位原理的多端口限流式直流断路器,具有通态损耗低、经济性良好、重合闸速度快等优点.首先,提出新型断路器的拓扑结构及动作策略,通过电压钳位原理切除故障,而后利用LC振荡关断支路晶闸管;其次,分别对母线和线路故障进行解析推导,进而针对其关断过程设计参数;最后,利用PSCAD/EMTDC中的三端直流电网模型验证其有效性与适用性,并分别对两种故障仿真加以分析,通过故障电流、系统电压及支路电压对比分析等验证该断路器可代替多个常规断路器,减少了主断路器需求.  相似文献   

14.
为提高多端直流电网在直流故障下的运行可靠性,同时降低对直流断路器分断能力的要求,提出了一种适用于直流电网的预限流型直流断路器拓扑,当电网出现过电流时预先将限流回路投入,并根据故障检测结果决定切除故障线路或恢复正常运行。该拓扑使用辅助电容和半控型器件晶闸管实现了限流电感的快速投切与故障电流快速切除,能有效抑制故障电流,并具备一定的经济性。为验证所提拓扑在预限流和快速分断方面的可行性,在PSCAD/EMTDC中搭建了四端直流电网仿真模型,并通过仿真结果验证了所提拓扑在抑制故障电流、隔离故障线路方面的有效性。  相似文献   

15.
目前,直流微网的保护方案大都依赖于线路两端直流断路器的快速开断能力与通信设备的可靠性,然而现阶段直流断路器成本高昂,且线路两端通信将会大大增加直流微网的建设运行成本。基于以上背景,文中以四端环形直流微网系统为研究对象,提出了一种基于控保协同的单端测距式保护技术。该方法分为故障控制与保护实施2个阶段。在故障控制阶段,通过改变电压源型换流器(VSC)自身以及外加可控元件的主动控制策略,使直流线路故障电流为零;在保护实施阶段,基于采用主动控制后VSC直流侧输出电压的周期性(20 ms)与电力电子元件的可控性,构建VSC与故障点的唯一回路,然后基于传统RL算法即可实现单端无差故障定位,接下来会出现线路电流持续过零,在此基础上,通过快速隔离开关实现故障隔离。该方法基于控保协同思想,消除了环网系统单端故障测距中对端电流的干扰,且线路两端无需配置直流断路器,仅利用快速隔离开关与故障控制策略进行时序逻辑上的相互配合即可实现故障隔离。最后,在PSCAD/EMTDC仿真平台上搭建四端环形直流微网系统模型,验证了该控制和保护方案的有效性。  相似文献   

16.
针对基于架空线输电的MMC-HVDC孤岛供电系统直流线路故障率较高的问题,配置直流断路器隔离故障是有效的解决方案之一.综合考虑了双极换流站灵活的运行方式、直流断路器的故障清除能力和双馈风机的快速响应能力,提出一种适用于MMC-HVDC孤岛供电系统的直流故障穿越协调控制策略,实现了自平衡和非自平衡工况下的功率协调.自平衡...  相似文献   

17.
为降低风电场-柔性直流并网系统在交流主网发生低电压故障时的穿越成本,提出一种直流耗能装置与风电机组卸荷电路协同作用的电网故障穿越策略,在电网故障时送端换流器配合风电场快速降低直流功率输出.由于直流耗能装置仅在故障发生的前期、风电场输出功率下降前起到限制直流电压升高的作用,该策略能够显著降低直流耗能装置的体积.在此基础上,该策略将直流耗能装置中的耗能电阻分散置入到受端模块化多电平换流器中,进一步降低了卸荷成本.最后,在PSCAD/EMTDC仿真软件中,构建了风电场-柔性直流并网系统的仿真算例,对所提出的故障穿越方法的正确性和有效性进行了验证.  相似文献   

18.
针对低压直流配电网,本文利用电压源型换流器的自关断功能来代替直流断路器限流的作用,进行保护方案配置。本文主要聚焦故障中断和隔离,利用继电器检测本保护区域故障信息并把动作信号传输到换流器,换流器动作隔离故障。在PSCAD软件中搭建两端供电的直流配电模型进行仿真,结果表明,在采用继电器的情况下,采用过电流的保护方案可以满足快速响应的要求,为下一步直流配电系统保护方案的研究奠定了良好的基础。  相似文献   

19.
因新能源渗透率高,多端口光伏分布式接入直流配电系统在并网换流器交流送出线路发生故障时应具备故障穿越的能力.然而,并网换流器与光伏直流变压器的容量、控制方式不同,即使两者在故障穿越期间可以相互高速通信协调,但是由于不同换流设备功率调节响应存在差异,直流母线电压容易发生较大波动,进而导致整个系统脱网.为此,提出了基于光伏端口电压调节的变功率控制方式,对直流配电系统有功功率进行动态补偿,可使直流母线电压快速恢复至额定运行点,解决交流故障导致的直流母线电压大范围波动问题,并给出了调节系数的整定与电压触发阈值的选取方式,从而实现可靠的故障穿越.PSCAD仿真结果表明,与传统控制策略相比,所提方法在不同故障程度、系统在交流故障前运行在不同有功功率的情况下,光伏电站均能有效且快速调节有功功率,避免了直流配电系统中换流器闭锁,保障了并网换流器故障穿越的实现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号