首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以聚碳硅烷(PCS)/二乙烯基苯(DVB)为先驱体制备了3D-B Cf/SiC复合材料,研究先驱体转化过程中不同裂解升温速率对材料力学性能的影响。结果表明:随着裂解升温速率的提高,材料致密度增加,界面结合变弱,从而陶瓷基复合材料的力学性能明显提高。以15℃/min裂解升温速率制得的陶瓷基复合材料的室温弯曲强度达到556.7MPa,1300℃真空下测试,材料的弯曲强度达到680.3MPa。  相似文献   

2.
低分子量聚碳硅烷制备3D-Cf/SiC复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了低分子量聚碳硅烷 (PCS) 通过先驱体浸渍裂解 (PIP) 工艺制备Cf/SiC复合材料。分析表明:PCS的数均分子量为400,活性较强,陶瓷化产率为70%左右,在1200℃基本转化为微晶态的β-SiC。分别通过3种不同升温速率制备了3D-Cf/SiC复合材料试样,其弯曲强度分别为745.2MPa、686.7MPa和762.5MPa,明显高于文献报道3D-Cf/SiC复合材料弯曲强度300~500MPa的水平。试样断口的SEM照片均显示长的纤维拔出,有良好的增韧效果,低分子量PCS裂解得到的基体比较致密。实验结果说明,低分子量PCS适合于制备3D-Cf/SiC复合材料,并且提高升温裂解速率对材料性能影响很小。   相似文献   

3.
热模压辅助先驱体浸渍裂解制备Cf/SiC复合材料研究   总被引:6,自引:2,他引:4       下载免费PDF全文
以聚碳硅烷为先驱体,采用热模压辅助先驱体浸渍裂解工艺制备3D-B Cf/SiC复合材料,研究了热模压辅助对3D-B Cf/SiC复合材料致密度和力学性能的影响。结果表明:先驱体浸渍裂解制备陶瓷基复合材料第一次浸渍后引入高温热模压工艺可以改善材料微观结构,显著提高材料的致密度和力学性能。其中1600℃,10MPa,1h下热模压辅助先驱体浸渍裂解6次制备的3D-B Cf/SiC复合材料的密度为1.79g/cm3,弯曲强度高达672MPa,断裂韧性达18.9MPa·m1/2,剪切强度接近50MPa,且具有较好的抗热震性和高温抗氧化性。  相似文献   

4.
采用先驱体浸渍裂解工艺(PIP工艺)制备C/SiC复合材料, 研究了不同先驱体对复合材料浸渍行为的影响(三种先驱体分别为固态聚碳硅烷(PCS(s))、液态聚碳硅烷Ⅰ(PCS-Ⅰ(l))和液态聚碳硅烷Ⅱ(PCS-Ⅱ(l)), 制备的三种复合材料体系分别为C/SiC-0、C/SiC-Ⅰ和C/SiC-Ⅱ)。结合C/SiC复合材料的力学性能以及不同裂解周期C/SiC复合材料的微观形貌, 研究了不同先驱体制备的C/SiC复合材料对碳纤维织物浸渍行为的影响。研究结果表明: C/SiC-Ⅰ复合材料的室温弯曲强度最高, 达到336 MPa。不同裂解周期的微观形貌显示, C/SiC-0复合材料内部孔隙分布于碳纤维束间; C/SiC-Ⅰ复合材料内部较致密, 孔隙分布均匀; C/SiC-Ⅱ复合材料基体和束丝内部都存在孔隙, 说明三种聚碳硅烷浸渍液对C/SiC复合材料有不同的浸渍效果。凝胶渗透色谱(GPC)的分析结果显示, 由于浸渍液的分子量不同, 大分子无法浸渍到碳纤维束丝内部, 会造成裂解后的复合材料束内SiC基体较少, 造成其力学性能较低。  相似文献   

5.
研究了Cr粉在以聚碳硅烷(PCS)为先驱体裂解制备SiC陶瓷材料中的应用。结果表明,Cr在较低的温度下减慢PCS的裂解反应,在较高的温度下则加剧PCS的裂解,且能增加先驱体的陶瓷产率,降低先驱体在裂解 的线性收缩率和气孔率,提高陶瓷材料性能。  相似文献   

6.
以聚碳硅烷(PCS)为先驱体,国产光威(Gw)碳纤维为增强体,采用先驱体浸渍-裂解工艺(PIP)制备了Cf/SiC复合材料.结果表明,所制备Gw碳纤维复合材料的力学性能优异,抗弯强度达到405.3MPa,断裂韧性15.7 MPa·m1/2.并对GW纤维制备复合材料的表面和断口进行了显微形貌分析,复合材料断口纤维拔出较多,Gw碳纤维在复合材料中很好地发挥了补强增韧作用.  相似文献   

7.
以聚碳硅烷(PCS)/二乙烯基苯(DVB)为先驱体,经8个周期的反复真空浸渍-交联-裂解处理制备出三维编织碳纤维增强碳化硅(3D-B Cf/SiC)复合材料,考察了裂解工艺对材料结构与性能的影响。结果表明:提高裂解升温速率可以提高材料密度,形成较理想的界面结合,从而提高材料的力学性能。裂解温度对材料性能也有较大的影响,Cf/SiC复合材料在第6个周期采用1600℃ 裂解可以弱化纤维与基体之间的界面,提高材料致密度,材料的力学性能也得到较大改善。裂解升温速率为15℃/min,第6个周期采用1600℃裂解制备的Cf/SiC材料性能较好,弯曲强度达到556.7 MPa。   相似文献   

8.
有机聚合物先驱体由于其分子可设计性好、成型方便、低温裂解转化为陶瓷的特点,在陶瓷纤维和纤维增韧陶瓷基复合材料的制备中表现出极大的优势。针对先驱体转化法体积收缩大、孔隙率高的不足,在先驱体中引入适当的活性填料是解决其不足的有效方法。以聚碳硅烷(PCS)为 SiC 陶瓷的先驱体,以金属(Al、Cr、Mo、Ta、Ti、W、Zr)、非金属(B、Si)及其化合物(CrSi_2、TiH_2、TiB_2)微粉为活性填料,对活性填料控制的 PCS 裂解陶瓷的陶瓷产率、线收缩率、密度、力学性能、产物结构等进行了系统的研究。对活性填料控制的 PCS 先驱体裂解陶瓷的尺寸变化进行了模型分析。从理论上揭示了活性填料的临界体积分数与活性填料反应的产率、反应前后的密度比之间的相关性。通过对 PCS/Al/SiC/N_2裂解体系反应热力学参数的计算,从理论上预测可能发生的反应与不可能发生反应。将热分析反应动力学方法应用到活性填料 Al 控制的 PCS 先驱体的裂解中。分别研究了 N_2中纯 PCS、纯 Al、Al/SiC、PCS/Al/SiC 体系各阶段的表观活化能及其裂解-反应机理函数以 X 射线衍射,电子显微镜元素线扫描等方法对 PCS/Al/SiCN_2体系的裂解-反应机理进行研究。在含活性填料的先驱体转化法制备纤维复合材料的致密化-密度增长模型中,引入体积收缩率的参数,对先驱体转化法纤维复合材料的密度增长模型进行了修正。将活性填料 Al 应用到单向 M40JB 纤维和吉林碳纤维增强 SiC 陶瓷基复合材料及反坦克导弹陶瓷喷管的制备工艺中,并对裂解产物进行了表征,获得很好的效果。这一结果对促进先驱体转化法陶瓷构件在武器装备中的应用具有重要意义。  相似文献   

9.
CVI-PIP工艺制备C/SiC复合材料及其显微结构研究   总被引:1,自引:0,他引:1  
采用化学气相渗透(CVI)与先驱体浸渍裂解(PIP)两种工艺方法联用制备C/SiC陶瓷基复合材料,通过与单纯PIP工艺的致密化效率比较,复合材料的扫描电子显微镜(SEM)、X射线衍射(XRD)分析,结果表明:采用CVI-PIP联用的方法制备C/SiC复合材料,致密化程度有明显的提高.CVI沉积SiC基体结晶性较好,为典型的β-SiC晶体结构;而PIP先驱体聚碳硅烷裂解基体为无定型结构,基体结构差异是决定材料结构与性能的关键因素.  相似文献   

10.
本文采用先驱体裂解-热压烧结方法制备出了Cf/SiC复合材料,并重点研究了复合材料的致密化过程.结果表明,复合材料主要是通过液相烧结而得到致密化的.由于复合材料中聚碳硅烷(PCS)的裂解不仅有利于烧结液相的形成,而且形成了大量的纳米级SiC颗粒,因此,复合材料能够在较低烧结温度下得到较好的致密化,从而使复合材料具有较好的力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号