首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy efficiency is a measure of the performance of IEEE 802.11 wireless multihop ad hoc networks. The IEEE 802.11 standard, currently used in wireless multihop ad hoc networks, wastes bandwidth capacity and energy resources because of many collisions. Therefore, controlling the contention window size at a given node will increase not only the operating life of the battery but also the overall system capacity. It is essential to develop effective backoff schemes for saving power in IEEE 802.11 wireless multihop ad hoc networks. In this paper, we propose an energy-efficient backoff scheme and evaluate its performance in an ad hoc network. Our contention window mechanism devised by us grants a node access to a channel on the basis of the node’s percentage of residual energy. We use both an analytical model and simulation experiments to evaluate the effective performance of our scheme in an ad hoc network. Our extensive ns-2-based simulation results have shown that the proposed scheme provides excellent performance in terms of energy goodput, end-to-end goodput, and packet delivery ratio, as well as the end-to-end delay.  相似文献   

2.
Although there has been considerable work on the performance evaluation of collision avoidance schemes, most analytical work is confined to single-hop ad hoc networks or networks with very few hidden terminals. We present the first analytical model to derive the saturation throughput of collision avoidance protocols in multi-hop ad hoc networks with nodes randomly placed according to a two-dimensional Poisson distribution. We show that the sender-initiated collision-avoidance scheme achieves much higher throughput than the ideal carrier sense multiple access scheme with a separate channel for acknowledgments. More importantly, we show that the collision-avoidance scheme can accommodate much fewer competing nodes within a region in a network infested with hidden terminals than in a fully-connected network, if reasonable throughput is to be maintained. Simulations of the IEEE 802.11 MAC protocol and one of its variants validate the predictions made in the analysis. It is also shown that the IEEE 802.11 MAC protocol cannot ensure collision-free transmission of data packets and thus throughput can degrade well below what is predicted by the analysis of a correct collision avoidance protocol. Based on these results, a number of improvements are proposed for the IEEE 802.11 MAC protocol.  相似文献   

3.
The mathematical modeling and performance evaluation of the IEEE 802.11 network in all its various extensions (802.11b, 802.11a, 802.11g, 802.11e, 802.11n, etc.) have already been widely explored over the past years. However, the Packet Fragmentation Mechanism (PFM), which is proposed by the IEEE work group to enhance the MAC sub-layer of the IEEE 802.11 standard in an error-prone channel, has been missed in the available literature. Yet, the PFM is the only existing solution to reduce the influence of bit error rate and the length of data packets on the packet error rate, and consequently on the performances of IEEE 802.11 networks. In this paper, we propose a new three-dimensional Markov chain in order to model, for the first time in the literature, the PFM in both Basic and RTS/CTS access methods of the IEEE 802.11b DCF network under imperfect channel and finite load conditions. Then, we develop mathematical models to derive a variety of performance metrics, such as: the overall throughput, the average packet delay successfully transmitted, the average packet drop time, the delay jitter and the packet delay distribution. Performance analysis of applying PFM on both Basic and RTS/CTS access methods of the IEEE 802.11b DCF network under imperfect channel and finite load conditions shows original results and leads to new conclusions that could not be intuitively expected.  相似文献   

4.
The hidden‐terminal problem significantly degrades the performance of IEEE 802.11 DCF. Many previous works have investigated its influence on the throughput of CSMA‐based medium access control (MAC) protocols, especially IEEE 802.11 DCF. In this paper, we introduce a new Jamming problem for IEEE 802.11‐based mobile ad hoc networks, which is caused by hidden terminals. An analytical model is established for this problem. Based on this model, an adaptive DCF (ADCF), is designed to solve the jamming problem through adaptively adjusting the minimum contention window of hidden terminals. Simulation results effectively demonstrate that the proposed A‐DCF can avoid the jamming and in turn greatly improve channel utilization and throughput. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents an analytical approach to model the bi‐directional multi‐channel IEEE 802.11 MAC protocols (Bi‐MCMAC) for ad hoc networks. Extensive simulation work has been done for the performance evaluation of IEEE 802.11 MAC protocols. Since simulation has several limitations, this work is primarily based on the analytical approach. The objective of this paper is to show analytically the performance advantages of Bi‐MCMAC protocol over the classical IEEE 802.11 MAC protocol. The distributed coordination function (DCF) mode of medium access control (MAC) is considered in the modeling. Two different channel scheduling strategies, namely, random channel selection and fastest channel first selection strategy are also presented in the presence of multiple channels with different transmission rates. M/G/1 queue is used to model the protocols, and stochastic reward nets (SRNs) are employed as a modeling technique as it readily captures the synchronization between events in the DCF mode of access. The average system throughput, mean delay, and server utilization of each MAC protocol are evaluated using the SRN formalism. We also validate our analytical model by comparison with simulation results. The results obtained through the analytical modeling approach illustrate the performance advantages of Bi‐MCMAC protocols with the fastest channel first scheduling strategy over the classical IEEE 802.11 protocol for TCP traffic in wireless ad hoc networks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A simple distributed PRMA for MANETs   总被引:6,自引:0,他引:6  
With the rapid development of Global Positioning System (GPS) technology and its applications, synchronization between terminals in mobile ad hoc environments becomes feasible at a low cost. Thus, slotted-channel-based medium access control (MAC) schemes like time division multiple access (TDMA) also become interesting for mobile ad hoc networks (MANETs). In this paper, we extend the classical centralized and slotted packet reservation multiple access (PRMA) scheme to a simple distributed PRMA (D-PRMA) as a MAC scheme for MANETs, with emphasis on voice application support. The major efforts of D-PRMA include 1) a simple slot reservation mechanism for voice traffic at the level of "talkspurt" without relying on any central entity and 2) a simple solution for the hidden and exposed terminal problems uniquely present in wireless ad hoc environments. The performance of D-PRMA has been investigated by analysis and computer simulations in comparison with IEEE 802.11. The results show that D-PRMA is much more suitable than IEEE 802.11 for voice application  相似文献   

7.
无线自组网中的移动节点大多依靠电池提供能量,因此能量是影响无线自组网性能的一个很大的瓶颈,作为事实上的无线自组网媒体接入协议,802.11并没有动态调整传输功率的能力,大大限制了网络的生存时间。采用功率控制可以提高节点的功率使用效率,减少相邻节点间的干扰,改善网络的性能。在802.11基础上提出一种基于信噪比的动态传输功率控制算法。通过进行计算机仿真,与802.11协议相比,在保持吞吐量性能的前提下,大大减少了节点的功率消耗,提高了节点的能量利用率。  相似文献   

8.
Performance evaluation of multihop ad hoc WLANs   总被引:4,自引:0,他引:4  
Ongoing technological advances in portable devices, coupled with the need for continuous connectivity while mobile, have made ad hoc networks a compelling research and development topic, particularly in a challenging multimedia multihop scenario. The ability of IEEE 802.11's ad hoc mode of operation, as a dominating wireless local area network (WLAN) protocol, to serve multihop networks requires thorough investigation. In this article, through considering crucial real-life physical phenomena and avoiding as many confining assumptions as possible, system performance measures such as delay and packet failure rate are evaluated. As a result, the importance of adequate selection of the system parameters toward performance improvement is underscored. Moreover, the simulation results imply that by complementing through priority provisions, coordination, route reservation, clustering, and optimum channel coding considerations, the IEEE 802.11 medium access control (MAC) protocol can survive in a multihop scenario. The custom simulation environment developed features modularity, comprising traffic generator, mobility, wireless channel, and IEEE 802.11 protocol modules, and is capable of accommodating many more of the physical phenomena involved.  相似文献   

9.
We propose a packet-level model to investigate the impact of channel error on the transmission control protocol (TCP) performance over IEEE-802.11-based multihop wireless networks. A Markov renewal approach is used to analyze the behavior of TCP Reno and TCP Impatient NewReno. Compared to previous work, our main contributions are listed as follows: 1) modeling multiple lossy links, 2) investigating the interactions among TCP, Internet Protocol (IP), and media access control (MAC) protocol layers, specifically the impact of 802.11 MAC protocol and dynamic source routing (DSR) protocol on TCP throughput performance, 3) considering the spatial reuse property of the wireless channel, the model takes into account the different proportions between the interference range and transmission range, and 4) adopting more accurate and realistic analysis to the fast recovery process and showing the dependency of throughput and the risk of experiencing successive fast retransmits and timeouts on the packet error probability. The analytical results are validated against simulation results by using GloMoSim. The results show that the impact of the channel error is reduced significantly due to the packet retransmissions on a per-hop basis and a small bandwidth delay product of ad hoc networks. The TCP throughput always deteriorates less than ~ 10 percent, with a packet error rate ranging from 0 to 0.1. Our model also provides a theoretical basis for designing an optimum long retry limit for IEEE 802.11 in ad hoc networks.  相似文献   

10.
1IntroductionIn Ad hoc networks , the nodes share the wirelesschannel under the control of media access control proto-col . Currently,there are two types of MAC protocolsproposedfor Ad hoc networks . The first is hand-shak-ing protocol such as IEEE 802 .11 MAC protocol[1 ~4]and MACAW[5], which controls the access procedureby exchanging the control packets among the activenodes . The secondis busy-tone protocol that introducesadditional busy tone signal to control the medium ac-cess . S…  相似文献   

11.
Ad hoc communication is gaining popularity, not only for pure ad hoc communication networks but also as a viable solution for coverage extension in wireless networks. Especially for upcoming WLAN hotspots, this is an interesting option to decrease installation costs. In this article we introduce a new MAC protocol that needs only marginal changes to the standard and enables efficient multihop networking. We advocate the use of multiple IEEE 802.11 channels, where one channel is reserved as a common signalling channel for the task of assigning the others (data channels) among wireless terminals. The proposed MAC protocols are based on a four-way handshake over the common signalling channel, while data transmission occurs on a dedicated channel. We propose a further optimization applying multiple wireless network interface cards. This improvement in performance comes at the price of a slightly more complex hardware. Two different simulation models are implemented to investigate our approach. The first model investigates the MAC protocol and its improvements, while the second model analyzes the multihop performance in terms of delivery ratio and transmission delay. BY means of numerous simulations we present the performance of our MAC approach in comparison with two standard approaches in terms of bandwidth, packet delivery, and transmission delay. For our performance evaluation we apply the IEEE 802.11a technology, but we note that our approach can also be used for IEEE 802.11b.  相似文献   

12.
In multihop wireless ad-hoc networks, the medium access control (MAC) protocol plays a key role in coordinating the access to the shared medium among wireless nodes. Currently, the distributed coordination function (DCF) of the IEEE 802.11 is the dominant MAC protocol for both wireless LANs and wireless multihop ad hoc environment due to its simple implementation and distributed nature. The current access method of the IEEE 802.11 does not make efficient use of the shared channel due to its conservative approach in assessing the level of interference; this in turn affects the spatial reuse of the limited radio resources and highly affect the achieved throughput of a multihop wireless network. This paper surveys various methods that have been proposed in order to enhance the channel utilization by improving the spatial reuse.  相似文献   

13.
vehicular ad hoc networks (VANETs) have been a key topic for research community and industry alike. The wireless access in vehicular environment standard employs the IEEE 802.11p/1609.4 for the Medium Access Control (MAC) layer implementation for VANETs. However, the carrier sense multiple access (CSMA) based mechanism cannot provide reliable broadcast services, and the multi-channel operation defined in IEEE 1609.4 divides the available access time into fixed alternating control channel intervals (CCH) and service channel (SCH) intervals, which may lead to the low utilization of the scarce resources. In this paper, a novel multichannel MAC protocol called CS-TDMA considering the channel access scheduling and channel switching concurrently is proposed. The protocol combines CSMA with the time division multiple access (TDMA) to improve the broadcast performance in VANETs. Meanwhile, the dwelling ratio between CCH and SCH changes dynamically according to the traffic density, resulting in the improvement of resource utilization efficiency. Simulation results are presented to verify the effectiveness of our mechanism and comparisons are made with three existing MAC protocols, IEEE MAC, SOFT MAC and VeMAC. The simulation results demonstrate the superiority of CS-TDMA in the reduction of transmission delay and packet collision rate and improvement of network throughput.  相似文献   

14.
Distributed cooperative MAC for multihop wireless networks   总被引:2,自引:0,他引:2  
This article investigates distributed cooperative medium access control protocol design for multihop wireless networks. Cooperative communication has been proposed recently as an effective way to mitigate channel impairments. With cooperation, single-antenna mobile terminals in a multi-user environment share antennas from other mobiles to generate a virtual multipleantenna system that achieves more reliable communication with a higher diversity gain. However, more mobiles conscribed for one communication inevitably induces complex medium access interactions, especially in multihop wireless ad hoc networks. To improve the network throughput and diversity gain simultaneously, we investigate the issues and challenges in designing an efficient MAC scheme for such networks. Furthermore, based on the IEEE 802.11 DCF, a cross-layer designed cooperative MAC protocol is proposed. The MAC scheme adapts to the channel condition and payload length.  相似文献   

15.
One of the challenges that must be overcome to realize the practical benefits of ad hoc networks is quality of service (QoS). However, the IEEE 802.11 standard, which undeniably is the most widespread wireless technology of choice for WLANs and ad hoc networks, does not address this issue. In order to support applications with QoS requirements, the upcoming IEEE 802.11e standard enhances the original IEEE 802.11 MAC protocol by introducing a new coordination function which has both contention-based and contention-free medium access methods. In this paper, we consider the contention-based medium access method, the EDCA, and propose an extension to it such that it can be used to provide QoS guarantees in WLANs operating in ad hoc mode. Our solution is fully distributed, uses admission control to regulate the usage of resources and gives stations with high-priority traffic streams an opportunity to reserve time for collision-free access to the medium.  相似文献   

16.
In a regular wireless ad hoc network, the Medium Access Control (MAC) protocol coordinates channel access among nodes, and the throughput of the network is limited by the bandwidth of a single channel. The multi-channel MAC protocols can exploit multiple channels to achieve high network throughput by enabling more concurrent transmissions. In this paper, we propose a hybrid and adaptive protocol, called H-MMAC, which utilizes multi-channel resources more efficiently than other multi-channel MAC protocols. The main idea is to adopt the IEEE 802.11 Power Saving Mechanism and to allow nodes to transmit data packets while other nodes try to negotiate the data channel during the Ad hoc Traffic Indication Message window based on the network traffic load. The analytical and simulation results show that the proposed H-MMAC protocol improves the network performance significantly in terms of the aggregate throughput, average delay, fairness and energy efficiency.  相似文献   

17.
Nowadays, research efforts are being put into the design of effective mechanisms to provide service quality differentiation in IEEE 802.11-based wireless LANs. In this article we analyze the effects of augmenting the contention-based channel access mechanism of IEEE 802.11e through the assignment of dynamic traffic priorities, that adapt to either the application's quality requirements or the network congestion status. The aim is to show the effectiveness and robustness of the proposed dynamic mechanism in a wireless ad hoc network, in both single-hop and multihop scenarios, under variable traffic and network load conditions.  相似文献   

18.
We propose a novel bandwidth allocation/sharing/extension (DBASE) protocol to support both asynchronous traffic and multimedia traffic with the characteristics of variable bit rate (VBR) and constant bit rate (CBR) over IEEE 802.11 ad hoc wireless local area networks. The overall quality of service (QoS) will be guaranteed by DBASE. The designed DBASE protocol will reserve bandwidth for real-time stations based on a fair and efficient allocation. Besides, the proposed DBASE is still compliant with the IEEE 802.11 standard. The performance of DBASE is evaluated by analysis and simulations. Simulations show that the DBASE is able to provide almost 90% channel utilization and low packet loss due to delay expiry for real-time multimedia services  相似文献   

19.
The IEEE 802.11e technology is receiving much interest due to the enhancements offered to wireless local area networks in terms of QoS. Other application fields for this technology are wireless ad hoc networks, wireless mesh networks, and vehicular ad hoc networks. In the literature, most of the research works available focusing on the IEEE 802.11e technology offer simulation results alone, being hard to find empirical results of implementations that prove its effectiveness in realistic scenarios. Additionally, we consider that studies of IEEE 802.11e based on simulation platforms have not been thoroughly validated using real-life results. In this work we analyze the performance of the IEEE 802.11e technology in real multi-hop ad hoc networks. With this purpose we first we devise a set of experiments where we compare the results obtained on a small testbed to those from the ns-2 simulation platform. A significant consistency in terms of overall trends is found, although remarkable differences can be appreciated in terms of both delay and throughput results. Afterward we proceed with a full deployment of IEEE 802.11e enabled stations throughout the floor of an university building, performing several experiments using both static and dynamic routing. Experimental results show that QoS can be reasonably sustained for both voice and video traffic in multi-hop ad hoc networks, although dynamic routing protocols can hinder performance by provoking frequent on-off connectivity problems.  相似文献   

20.
IEEE 802.11-saturation throughput analysis   总被引:1,自引:0,他引:1  
To satisfy the emerging need of wireless data communications, the IEEE is currently standardizing the 802.11 protocol for wireless local area networks. This standard adopts a CSMA/CA medium access control protocol with exponential backoff. We present a simple analytical model to compute the saturation throughput performance in the presence of a finite number of terminals and in the assumption of ideal channel conditions. The model applies to both basic and request-to-send/clear-to-send (RTS/CTS) access mechanisms. Comparison with simulation results shows that the model is extremely accurate in predicting the system throughput  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号