首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
生物质流化床空气水蒸气气化模拟   总被引:1,自引:0,他引:1  
生物质气化是一种可有效利用生物质能源的热化学转化技术。该文利用大型化工流程模拟软件Aspen Plus建立生物质在流化床气化炉内空气水蒸气气化模型,并研究气化温度对产气组分的影响。将模拟结果与试验结果进行了对比,吻合良好,表明该模型具有一定的适用性。利用灵敏度分析功能研究了空气当量比(equivalence ratio,ER)和水蒸气/生物质质量比(S/B)对产气组分、热值以及气化效率的影响。结果表明:提高气化温度,产气中H2和CO2含量增加,而CO和CH4含量减小;在空气当量比为0.27时气化效率最高;当S/B取1.3~1.7范围时,产气热值较高,可达11.8MJ/m3。  相似文献   

2.
在自制的小型常压流化床内采用多孔介质床料对生物质颗粒燃料进行气化试验,分别考察了富氧气氛下温度和氧气浓度、水蒸气气氛下温度和水蒸气流量及不同种类多孔床料对生物质颗粒燃料气化的产气成分及产气热值的影响.试验结果表明:随气化温度的升高,产气中H2含量增加,CH4含量降低,产气热值降低;氧气浓度对气化有一定影响,在试验条件下,增大氧气浓度可以提高产气中H2含量;随着水蒸气流量的增加,产气中H2含量从11.89%增加到45.77%,但产气热值降低;在3种不同的多孔介质床料中,以沸石为床料时气化产H2效果最好.  相似文献   

3.
生物质分段热解气化工艺通过提升反应温度提高碳转化率、降低焦油含量。该工艺过程中利用部分生物质热解气化产气在气化炉外部的燃烧器进行燃烧产生高温烟气,为热解、气化过程提供热量。该文选取稻壳为原料,利用Aspen Plus软件,模拟稻壳与水蒸气分段热解气化工艺过程,该过程考虑了热量回收与利用以及产气的部分循环利用,通过流程模拟,分析了气化温度、水蒸气通入量对产气各组分的产量、碳转化率、产气低位热值的影响。结果表明:利用总产气量的15.4%~20.5%用于燃烧可实现分段热解气化工艺的热量自给。随着气化温度的升高,产气中H2和CO含量增加,碳转化率升高,产气低位热值在气化温度为700℃时最低,随后逐渐升高;水蒸气的通入量增加会提高H2和CO2的产量,使碳转化率升高,产气低位热值降低;在气化温度为800~1 000℃内,w(H2O)/w(B)0.15(水蒸气与生物质质量比)时,CO的产量随水蒸气的通入量增加而减少,碳转化率接近100%。  相似文献   

4.
在鼓泡流化床上研究松木屑和褐煤的共气化特性.在空气当量比为0.26的工况下,研究松木屑掺混比例0~100%对反应温度、产气组分、气化气热值、碳转化率和气化效率等参数的影响.结果表明:当木屑掺混比例从0%增加至100%时,反应温度逐渐降低,CO的体积含量从9.58%增加至17.29%,H2的体积含量从5.78%增加至6.50%,CO2的体积含量从14.25%下降至11.71%,CH4和CnHm的体积含量变化不大,呈先增加后降低的趋势,在掺混比例为50%时达到最大.气化气低位热值、碳转化率和气化效率均增加,在掺混比例为50%时,松木屑和褐煤共气化协同作用明显.  相似文献   

5.
生物质分段热解气化工艺通过提升反应温度提高碳转化率、降低焦油含量。该工艺过程中利用部分生物质热解气化产气在气化炉外部的燃烧器进行燃烧产生高温烟气,为热解、气化过程提供热量。该文选取稻壳为原料,利用Aspen Plus软件,模拟稻壳与水蒸气分段热解气化工艺过程,该过程考虑了热量回收与利用以及产气的部分循环利用,通过流程模拟,分析了气化温度、水蒸气通入量对产气各组分的产量、碳转化率、产气低位热值的影响。结果表明:利用总产气量的15.4%~20.5%用于燃烧可实现分段热解气化工艺的热量自给。随着气化温度的升高,产气中H2和CO含量增加,碳转化率升高,产气低位热值在气化温度为700℃时最低,随后逐渐升高;水蒸气的通入量增加会提高H2和CO2的产量,使碳转化率升高,产气低位热值降低;在气化温度为800~1000℃内,w(H2O)/w(B) 〉0.15(水蒸气与生物质质量比)时,CO的产量随水蒸气的通入量增加而减少,碳转化率接近100%。  相似文献   

6.
生物质高温空气气化的分析与探讨   总被引:2,自引:0,他引:2  
曹小玲 《华东电力》2003,31(10):16-19
简述了生物质高温空气气化的工作原理 ,对气化的两个阶段进行了详细探讨 ,就气化参数对生物质高温空气的影响进行了深入分析 ,结果发现 :随蒸汽消耗率的增加气化温度降低 ,而气化所得的煤气热值增大 ;气化温度随氮碳比的增大而升高 ,而气化所得的煤气热值却随氮碳比的增加而降低 ;煤气热值随气化温度的增加而增大 ,但是增加量不大  相似文献   

7.
生物质气化特性的实验研究   总被引:1,自引:0,他引:1  
在小型固定气化炉和中型气化炉内对典型生物质进行气化实验,分别采用空气、氧气及水蒸气作为气化介质。实验分析了物料、气化温度、气化剂及气化剂流量等影响因素发生变化时对气化产气特性的影响。研究表明,物料含可燃质高时,产气品位也好;随着气化温度的升高,产气中可燃气含量增加;空气作气化剂时产气的热值低于氧气作气化剂时的产气热值;气化剂的流量发生变化时,气化产气成分也相应改变。  相似文献   

8.
采用气化焚烧炉对典型城市固体废弃物与煤的混合物料进行气化试验,气化介质分别为空气、氧气及水蒸气。研究了物料、气化温度、气化剂及气化剂流量等对气化产气特性的影响,结果表明,当物料含可燃质高时,产气品位好;空气作气化剂时产气的热值低于氧气作气化剂时的产气热值;当气化剂为氧气时,加入适量的水蒸气可提高产气品位;气化剂的流量发生变化时,气化产气成分相应改变;气化温度升高后,产气中燃气含量有所增加。  相似文献   

9.
何志超 《黑龙江电力》2014,36(6):510-514
针对煤和生物质在单独气化过程中存在的转换率低、气体热值低和焦油含量高等问题,笔者通过CHEMKIN软件建立流化床反应模型对木屑和褐煤的空气气化进行模拟试验,研究生物质掺混比例(木屑/褐煤)、空气当量比,对产气组分、气体产率、碳转化率、热值和气化效率的影响.分析结果表明,通过建立柱塞流反应模型,依据燃料自身特性,选取合适的掺混比和空气当量比(ER值),可以得到高热值气体,并提高气化效率.  相似文献   

10.
垃圾衍生燃料气化动力学特性研究   总被引:1,自引:0,他引:1  
采用气化工艺处理城市固体废物不仅可以从中回收能源,同时还可以降低二次污染的影响。采用热重分析法对垃圾/生物质为1:1、1:2、1:3和纯生活垃圾的RDF样品进行气化研究,通过分析不同物料比、不同升温速率、不同气氛、不同终温对RDF气化反应过程的影响,得出RDF气化反应动力学参数。研究表明随着升温速率的增加,产气中H2的产量呈上升趋势,CO和CH4的产量先升高再降低;随着O2含量的增加,RDF的气化效果越来越好,其气化产气中H2的含量呈上升趋势。  相似文献   

11.
生物质物料气化产气特性的研究   总被引:3,自引:0,他引:3  
在自行设计的气化燃烧两段炉中对4种常见的生物质物料进行了十几种不同工况的气化试验。分别研究在不同温度、不同气化介质、不同流量下,由气化生成的合成气中各组分含量和热值的变化趋势及规律。结果表明:(1)随着温度的升高,CO和H2含量增高;(2)水蒸气的加入显著提高了H2的含量;(3)在试验条件下,给料量为5kg/h、富氧流量为4.5m^3/h时,气化效果较好。  相似文献   

12.
基于CaSO4载氧体的煤化学链燃烧技术,采用小型流化床模拟燃料反应器,对煤气化–CaSO4还原反应展开实验研究。水蒸气作为气化及流化介质,煤气化气体产物(CO、CH4、H2)与CaSO4发生还原反应。结果表明,煤气化是煤气化–CaSO4还原反应过程的控制步骤;CH4、H2累积量随温度升高呈减少趋势,高于950 ℃时反应产物中无CH4、H2,温度低于950 ℃时CO累积量随温度增高亦呈减少趋势, 但高于950 ℃时CO累积量随温度升高反而略有增加;煤气化反应的碳气化效率以及煤气化–CaSO4还原反应的C–CO2转化率均随温度而增大,最大值分别达95.9%、91.5%。CaSO4在CH4、H2气氛的反应活性随温度升高而显著提高,而在CO气氛下其反应活性较弱;煤气化–CaSO4还原反应后的载氧体颗粒出现轻微磨损,扫描电镜分析表明反应后载氧体颗粒的比表面积增大,950 ℃时存在轻微烧结现象,但对载氧体反应活性影响不大。  相似文献   

13.
对MW级谷壳气化发电的操作特性进行了研究。主要考查了流化速度及当量比(ER)对气化炉运行温度、压降、气体成分及其热值、气体的产率、谷壳中碳转化率的影响。实验结果显示:流化速度为0.25~0.32 m/s,ER为0.25~0.35时,气化炉运行温度稳定,产生的可燃气体成份的体积百分含量为H2:3.25%~4%, CO:14.43%~20%,CH4:1.84%~3%,C2Hm:0.98%~2.14%;气体的热值:3.1~5.03 MJ/Nm3,气体的产率为1.3~1.98 Nm3/kg,谷壳中碳的转化率为56%~82%。当操作条件为:流化速度0.25 m/s、ER=0.25时,所产生出的燃气对燃气发电机组的运行最佳。  相似文献   

14.
基于CaSO4载氧体的煤化学链燃烧分离CO2研究   总被引:2,自引:0,他引:2  
提出基于CaSO4载氧体的串行流化床煤化学链燃烧分离CO2技术,分析了燃料反应器内水煤气反应、CaSO4以及金属氧化物载氧体还原反应热力学特性参数,表明CaSO4是煤化学链燃烧反应理想的载氧体。应用Aspen Plus软件,建立了基于CaSO4煤化学链燃烧串行流化床内各种物质的质量平衡、化学平衡和能量平衡模型,进行模拟研究;结果表明,随着燃料反应器温度不断提高,燃料反应器气体产物中H2O体积浓度基本维持不变,CO2浓度略有降低,CO迅速上升,而H2缓慢增大;H2S随反应温度呈幂指数规律衰减,SO2显著递增,表明燃料反应器产物中SO2和H2S中的硫不全部是煤中硫,部分硫来自于CaSO4载氧体竞争反应的产物;载氧体循环倍率随燃料反应器温度升高呈幂指数级增加,随空气反应器温度呈幂指数级递减。  相似文献   

15.
热解温度对神府煤热解与气化特性的影响   总被引:7,自引:1,他引:6  
采用大容量加压热重分析仪研究了不同热解温度(500, 650, 800 和1 000 ℃)与压力(常压、3 MPa)下神府煤的热解特性,同时采用傅里叶红外光谱仪、比表面积分析仪等分析仪器对所得煤焦的物化特性进行了详细分析。发现高温有利于挥发分的析出,使得煤焦产量快速降低;同时煤焦内C元素的含量快速增加而H含量逐渐减少,同时煤焦内有机官能团的红外吸收也明显减少;煤焦的孔隙表面积和孔容随热解终温的升高先增大后减小,在800 ℃(常压)和650 ℃ (3MPa)取得最小值。热解温度和压力对煤焦的气化活性也有显著的影响。采用常压热重分析仪在1000 ℃下分析了煤焦的CO2等温气化特性。常压热解焦的CO2等温气化活性随温度升高而降低,而加压热解得到的焦有不同的趋势,说明压力和温度对煤粉热解和气化的影响有一定交互作用。  相似文献   

16.
木屑和聚乙烯流化床共气化实验研究   总被引:4,自引:3,他引:4  
为揭示城市生活垃圾中典型组分在气化过程中的相互作用,该文以木屑和聚乙烯为研究对象,在流化床中进行了单组分和双组分共气化实验研究。结果显示,通过控制燃料量和反应温度,可以避免流化恶化现象发生。木屑与聚乙烯共气化时,CH4的浓度分布与单组分聚乙烯气化CH4趋势一致;共气化时,产品气中CO浓度随着温度升高而降低,近似于单组分木屑和聚乙烯气化时CO浓度的线性组合;共气化时C2Hm生成量减少。静止床高增加时,有利于CO、H2、CH4以及低碳氢化合物的生成。  相似文献   

17.
根据分级转化的思想,以空气与水蒸气的混合物作为气化介质,在小型流化床煤气化试验台上研究了汽煤比、空气煤量比(空煤比)和床层压降对气化过程的影响,并与空气气化的结果进行对比分析,得出了汽煤比和空煤比与床层温度、煤气成分、煤气热值、煤气产率、碳转化率等的关系,并获得了床层压降对煤气成分和煤气热值影响的数据.  相似文献   

18.
秸秆类生物质加压气化特性研究   总被引:6,自引:2,他引:4  
采用热重分析与气相色谱分析(TG-GC)相结合的方法,开展了水蒸气气氛下生物质(麦秸)加压气化特性研究,探讨压力对反应动力学特性与气化产物的影响。实验结果表明生物质常压气化与加压气化特性有显著差异;加压条件下,麦秸的气化反应过程受化学反应动力学和扩散作用控制。麦秸水蒸气气氛下的热解阶段可视为一级反应,半焦气化阶段视为缩核反应;加压下热解、气化的表观活化能和频率因子均随反应压力的提高而增加。水蒸气对生物质热解气化具有活化作用,相比N2气下麦秸的表观活化能降低。此外,生物质水蒸气气化产物中H2浓度最大,达到50%以上,表明水蒸气是生物质气化制氢适宜的气化介质;随着气化压力的提高,CO2和CH4浓度增加,而CO浓度降低。  相似文献   

19.
在江西某循环流化床富氧气化装置上,考察了不同煤种、原煤粒径分布、料层差压、反应温度、氧气流量对气化装置运行特性的影响,研究了各工况对煤气热值、炉渣含碳量和碳转化率的影响并进行了综合优化调整。结果表明:在相同气化条件下,陕北神木原煤运行的各项参数指标均高于内蒙东胜原煤。原煤粒径分布、料层差压、反应温度和氧气流量对降低炉渣含碳量,提高碳转化率、煤气有效组分和热值有一定作用,为大型循环流化床富氧气化装置运行和优化提供了方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号