首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
为研究饱水状态下层状板岩的动态拉伸力学特性及能量耗散规律,通过压杆直径为50 mm的SHPB系统进行巴西圆盘劈裂试验,研究水、层理倾角及加载率对板岩的动态拉伸强度、破坏模式及能量耗散的影响。研究结果表明:(1)随着加载率的增加,板岩动态拉伸强度及耗散能密度均提高;(2)当加载率低于395 GPa·s-1时,饱水板岩的拉伸强度低于干燥板岩,岩体强度呈现饱水软化现象;当加载率高于395 GPa·s-1时,饱水板岩的拉伸强度高于干燥板岩,岩体强度呈现饱水强化现象;(3)当加载角度θ=0°~15°时,饱水板岩为拉伸破坏;θ=30°~90°时,饱水板岩为拉伸剪切组合破坏;θ=75°和90°时,随着加载率的增加,饱水板岩的动态拉伸强度增幅更快,耗散能及耗散率最高;(4)冲击荷载下饱水板岩的耗散能密度高于干燥板岩。  相似文献   

2.
含片理板岩在物理力学特性方面表现出明显的各向异性。综合考虑片理角度(?)和加载方向(θ)两个影响因素开展板岩巴西劈裂试验,对片理面的三维结构效应进行深入研究。结果表明:(1)片理面三维结构效应对板岩力学强度和破坏特征有显著影响,不同片理角度条件下巴西劈裂强度随加载方向的变化趋势有明显差异。(2)在片理角度较小或较大的情况下,即0°≤?≤15°或75°≤?≤90°,破坏面的三维空间效应不明显,圆盘正反两面的宏观裂纹具有一定的相似性;当?和θ均位于[30°,60°]内,2种因素的耦合作用使破坏面呈现三维空间分布的特点,圆盘正反两面的宏观裂纹呈现近似反对称的位置关系。(3)板岩在巴西劈裂试验中的储能能力与片理角度呈负相关关系,与巴西劈裂强度呈正相关关系。(4)片理角度对巴西劈裂强度的影响更显著,加载方向对破坏形式的影响更显著。随片理角度增加,巴西劈裂强度和能量的各向异性比均呈现增大的趋势,即各向异性越来越明显。研究成果可为横观各向同性岩石张拉力学特性分析提供参考和试验依据。  相似文献   

3.
基于直剪试验的页岩强度各向异性研究   总被引:1,自引:0,他引:1  
 层理面的存在是页岩地层力学性质、强度特征和破裂模式表现出明显各向异性特征的根本原因,也是引起水平井井壁易失稳的重要原因之一。为分析层理面的力学性质及其影响下页岩的抗剪强度各向异性特征,开展不同角度页岩的直接剪切试验,并根据剪切破坏机制的各向异性和剪应力集中系数,从不同角度分析抗剪强度各向异性的原因,试验和理论分析结果表明:(1) 层理面是页岩地层的薄弱面,其黏聚力和内摩擦角明显小于页岩基质体,抗剪强度也最低,其剪应力–剪切位移曲线并没有表现出岩石剪切强度随滑动而弱化的特点,而是其残余摩擦力甚至还略大于抗剪强度。(2) 0°,30°,60°和90°四个方向中,页岩抗剪强度的最大值在60°时取得,且0°,30°和60°试样的剪应力–剪切位移曲线均表现出剪切强度随滑动而弱化的现象。(3) 页岩剪切破坏机制可分为沿页岩本体的剪切破坏、沿层理面张拉和本体剪切的复合破坏、以及沿层理面的剪切滑移3种模式;页岩抗剪强度的各向异性是由其剪切破坏机制的各向异性控制的。(4) 剪应力集中系数在一定程度上反映了岩石直接剪切时剪切承载力的强弱,可用来分析页岩抗剪强度的各向异性特征;不同方向页岩直接剪切时,剪应力集中系数仅与沿剪切方向的弹性模量和剪切层的厚度有关;相同法向应力下,90°试样的剪应力集中系数最大,抗剪强度最小,而60°试样的剪应力集中系数最小,抗剪强度最大。该试验和理论分析结果可为深入分析岩质边坡中滑动面的运动特征和页岩气水平井井壁稳定性等提供一定参考。  相似文献   

4.
层理面是导致岩石试样在变形和力学特性上表现出各向异性的根本原因。为研究层理弱面影响下板岩的渐进破坏模式,揭示其各向异性的力学机制,选取贵州东部的层状板岩开展不同加载空间位置关系下的直剪试验。结果显示:剪切强度各向异性是由其破坏机制控制的,层理面与剪切面平行时,属于沿层理面的剪切滑移破坏;层理面与剪切面垂直且其交线与剪应力方向也垂直时,属于剪切作用下层理面的张拉和基质体的剪切破坏;层理面与剪切面垂直而其交线与剪应力方向平行时,垂直于层理面方向试样在泊松效应作用下产生拉伸破坏,剪应力方向试样发生基质体的剪切破坏,此时强度最大。基于层理结构的本构关系,构建层理体系的材料模型,并采用数值模拟研究层理结构对板岩破坏模式的影响,模拟结果与试验结果吻合较好,进一步解释了层状板岩破坏模式各向异性的产生机制。  相似文献   

5.
为探究动态加载条件下层状板岩的各向异性行为,采用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)获得江西层状板岩在高应变率下5组层理面倾角(θ=0°,30°,45°,60°和90°)临界破坏状态力学特征及破坏机制,进而利用元件组合模型理论,建立考虑宏观层理影响的层状岩体动态损伤本构模型。试验及理论分析结果表明:各层理角度试样应力–应变曲线峰值大小不同,但总体变化规律相近,均包含加载前期的弹性压缩阶段,中期的塑形阶段和塑性加强阶段,以及达到峰值后的峰后曲线;临界破坏状态下层理面在试样的破坏中起到重要作用,除θ=0°为穿越层理面的劈裂破坏外,其余层理倾角的破坏模式主要包括:偏向层理面方向的剪切破坏、沿层理面的滑移破坏和沿层理面的劈裂破坏。新建立的层状岩体动态损伤本构模型,综合考虑岩体自身微观损伤和宏观层理面损伤叠加影响,该模型不仅能较好地描述冲击条件下层状岩体应力–应变曲线变化规律,且峰值强度吻合较好,有助于更为准确地描述层状板岩在高应变率下变形破坏行为。  相似文献   

6.
横观各向同性层状板岩在地质环境及施工裸露后形成的水–岩和自然风化作用下,其物理力学性质将发生退化,由此常引起岩土隧道、边坡等工程产生抗拉失稳破坏。以甘肃岷县木寨岭隧道炭质板岩为研究对象,对其开展即时烘干试样(即试样加工后烘干处理)和静置风化试样(加工后室内常温通风放置60d)巴西劈裂试验,分析了两种条件下炭质板岩的抗拉力学性能。结果表明:两种炭质板岩巴西劈裂试验均表现为脆性破坏,但力学响应及峰值荷载差异极大;炭质板岩抗拉强度均受层理影响显著,但即时烘干试样和静置风化试样的劈裂破坏形态受层理影响程度不同;以即时烘干试样为基础,静置风化试样软化系数为0.11~0.13,体现了水岩作用及其静置风化对岩样具有显著劣化效应,但对层理形成的横观各向同性抗拉性能影响不大。此外,借助SEM对水岩静置风化机理进行分析,具体为水侵入后形成物理化学反应改变矿物微观成分、结构进而结合风化作用表现为矿物骨架承载的累计劣化损伤。  相似文献   

7.
岩体的各向异性力学特性对工程安全稳定具有至关重要的影响。针对工程中常见的层状砂岩,设计进行0°,15°,30°,45°,60°,75°和90°等7种层理角度的单轴和三轴压缩试验,详细分析层理角度对岩体力学特性和破坏模式的影响。研究结果表明:(1)不同层理角度岩样的应力–应变曲线形态基本一致,均包括压密阶段、弹性阶段、屈服阶段和破坏阶段,随着层理角度的增加,应力–应变曲线的压密阶段逐渐变短;(2)在单轴和三轴压缩状态下,层状砂岩各向异性特性明显,层理角度从0°增大到90°,弹性模量逐渐增大,而变形模量、抗压强度、黏聚力和摩擦角先减小后增大,呈U型分布,在0°或90°时达到最大值,60°左右时达到最小值;(3)随着围压的增大,其对层理弱面开裂滑动的限制作用逐渐增强,层理弱面对岩样的破坏模式影响效应逐渐减弱,不同层理角度岩样的力学参数差别逐渐减小,岩样的各向异性特性逐渐减弱;(4)层状砂岩的破坏模式与层理角度和围压的关系密切,可以归纳为3种类型:劈裂张拉破坏、顺层理弱面的剪切滑移破坏、局部顺层理弱面和局部穿越基质、层理弱面的复合剪切破坏。研究结论可为层状砂岩相关的工程变形稳定分析提供参考。  相似文献   

8.
通过层理面角度为0°、45°和90°的长方体砂岩试样的单轴和三轴试验,直接测量了不同围压下砂岩的5个独立的横观各向同性弹性参数:弹性模量E,E′;泊松比ν,ν′;剪切模量G′。测得了前人难以测量的不同围压下的ν和G′值,得到了横观各向同性弹性参数与围压之间的函数关系,并揭示了弹性参数随围压变化的力学机制。试验结果表明,随着围压增大,弹性模量增大,泊松比减小,剪切模量增大。当围压超过30 MPa时,2个垂直方向的弹性模量、泊松比和剪切模量分别趋于相同值,表现为各向同性。由此可以推断:该砂岩的横观各向同性由内部微裂纹在平行于和垂直于层理面方向分布不均引起,围压升高造成裂纹闭合,最终导致各向异性消失。岩石的裂纹闭合效应可以用裂纹密度来定量评价与描述。  相似文献   

9.
 为了研究岩石各向异性及非均质性对其破坏形式的影响,对含层理构造的非均质片麻岩进行了多组加载角度的巴西劈裂试验,获得不同层理方向片麻岩试件“抗拉强度”。其计算“抗拉强度”随着层理方向与加载方向夹角减小而迅速减小,当层理方向平行于加载方向时,计算“抗拉强度”可认为是片麻岩软弱层理面间的抗拉强度;当层理方向垂直于加载方向时,计算“抗拉强度”可认为是片麻岩岩石矿物基质的等效抗拉强度;当层理方向与加载方向夹角小于90°时,则属于拉–剪复合破坏形式,是片麻岩各向异性和非均质性共同作用的结果,此时对计算“抗拉强度”的应用需要特别谨慎。用UDEC程序建立离散单元数值模型,利用随机分布的条状块体集合,通过设置层理界面和矿物颗粒之间的接触参数,模拟层理构造对片麻岩破坏的影响。数值模拟与试验结果吻合较好,解释了劈裂破坏形式产生的机制,揭示岩石在荷载状态下的破裂过程是裂纹从萌生初期的无序分布,到受微观构造影响而有序集中的自组织过程。  相似文献   

10.
圆盘冲击劈裂试验中岩石拉伸弹性模量的求解算法   总被引:2,自引:2,他引:0  
 提出圆盘冲击劈裂试验中求解岩石拉伸弹性模量的解析算法。结合圆盘对心受力的理论弹性解和实际试验过程中方便测量的物理参数,基于微积分原理,得到岩石拉伸弹性模量和垂直加载方向上总位移变形量之间的定量关系式。在此基础上,考察试样中心平行加载方向和垂直加载方向位移量之间的关系,认为两者之间存在线性关系,可以用比例函数进行表示。最后,结合SHPB冲击劈裂试验原理,通过测量得到平行加载方向位移,利用得到的比例函数进行换算,代入到拉伸模量和垂直加载方向上总位移变形量之间的定量关系式中,进而得到圆盘冲击劈裂试验中岩石拉伸模量的求解公式。该式包含冲击加载力、试样直径、试样厚度、岩石泊松比和试样中心平行加载方向上总位移变形量5个物理量,意义明确,运用简便,为求解圆盘劈裂试验拉伸弹性模量提供了一种新的方法。  相似文献   

11.
为深入揭示Kapton高分子膜材强度和刚度特征,对其进行 7个偏轴角度(0°、15°、30°、45°、60°、75°、90°)下的单轴拉伸试验,获得了材料在各角度下的应力-应变关系、强度和断裂延伸率等数据,推导了相应的弹性模量-应变关系。结果表明:Kapton薄膜为典型的非线性、各向异性材料,整个拉伸过程的应力-应变曲线可以分为3个阶段,即近似弹性段、应变强化段、应力强化段; Kapton膜材强度随偏轴角度的变化表现出“N”形分布规律,异于Tsai-Hill等强度准则的“U”形规律,这是由于膜材内部分子链的择优取向,导致偏轴角度30°时抗拉强度最大,偏轴角度60°时抗拉强度最小; 断裂延伸率随偏轴角度的增大呈现出增大的趋势; 不同偏轴角度下的弹性模量均有所差异,正交各向异性板的弹性理论可以较好预测Kapton膜材的等效弹性模量; 研究所得结论可为Kapton膜材强度、变形预测及相应的充气可展结构设计分析提供参考。  相似文献   

12.
对用类岩石材料自制的层状岩体试样,开展了一系列的直剪试验,研究了层理面倾角和层理面间距对岩体抗剪强度的影响,分析了层状岩体剪切破坏形态的规律。试验结果表明:层理面倾角为0°时,试样的抗剪强度最低;层理面倾角为30°时,试样的抗剪强度最高;层理面间距越大,试样的峰值抗剪强度也越高;层状岩体试样的剪切破坏形态,按其破坏机理可分为滑移、剪断和张拉断裂破坏3种。  相似文献   

13.
节理岩体模型单轴压缩破碎规律研究   总被引:3,自引:1,他引:2  
 为进一步研究节理倾角和节理连通率这2个参数对岩体单轴压缩下破碎特征的影响,对这些试件试验后的碎屑进行筛分试验。碎屑按照粒径d≥10 mm,5 mm≤d<10 mm,0.075 mm≤d<5 mm和d<0.075 mm分为粗粒、中粒、细粒和微粒4个粒级。计算各粒级碎屑的质量百分比、各粒径范围内碎屑的频数、碎屑比表面积和碎屑尺度–质量分布的分形维数。研究结果表明,粗粒碎屑的质量百分比随着节理倾角的增加先增大后减小,在45°附近有最大值。而其他粒级的碎屑的质量百分比、各粒径范围内碎屑的频数、碎屑比表面积和碎屑尺度–质量分布的分形维数随节理倾角的变化规律则相反,在45°附近有最小值,这与强度和弹性模量随节理倾角的变化规律相似。与各节理倾角下试件强度和弹性模量随节理连通率增加而单调减小的规律不同,试件碎屑的统计参数随节理连通率的变化规律较为复杂。总体上,节理倾角为0°,15°,75°和90°的试件,碎屑的粗粒质量百分比较无节理完整试件的低,而碎屑的中粒、细粒和微粒的质量百分比、各粒径范围内的频数、比表面积、分形维数都较无节理完整试件的要高,表明节理的存在使得其破碎程度提高,能量耗散增多;而节理倾角为30°,45°和60°的试件则有相反的规律。这是由于前一组节理倾角试件的破坏模式除包含有无节理试件的劈裂破坏模式外,还伴随有压碎或转动破坏模式,其破裂面数和能量耗散总量要高于后一组节理倾角试件的压剪破坏模式,其中节理倾角为45°的试件仅沿对角线形成一个剪切贯通面,破裂面数和能量耗散最小。  相似文献   

14.

Uniaxial compression tests were carried out on bedded sandstone to explore the effect of exposure to high temperatures on the physical and mechanical properties of the specimens. The influences of testing temperature and bedding orientation on the physical and mechanical properties and failure behaviors of the bedded sandstone were analyzed. The results show that for sandstone with a constant bedding orientation, as the temperature increases, the P wave velocity first increases and then decreases, while the mass and density decrease. The mechanical properties of bedded sandstone, including its compressive strength and elastic modulus, first increase and then decrease with increasing temperature, and a thermal temperature of 400 °C was identified as the transition temperature, above which considerable changes in the mechanical properties were observed. In addition, the P wave velocity, strength, and elastic modulus also varied with increasing bedding orientation, which indicated that the bedded sandstone exhibits anisotropy in its P wave velocity, strength, and elastic modulus. The P wave velocity gradually increases with increasing inclination angle, and the fluctuation in the anisotropic degree of the P wave velocity remains small as the temperature increases. The strength and elastic modulus of the bedded sandstone exhibit U-shaped variations with increasing bedding orientation, and the anisotropy degree first increases and then decreases with increasing temperature. Furthermore, the failure modes are closely related to the designed heat treatment temperature and bedding orientation and can be generally classified into four categories: shearing across the rock matrix and bedding planes, shearing combined with tensile splitting, shearing along the bedding planes, and shearing combined with tensile splitting along the bedding planes. Finally, the effect of high temperatures on the mechanical properties of bedded sandstone was further revealed by means of SEM analysis from a microstructure point of view.

  相似文献   

15.
板岩等层状岩体中常存在多种结构面,岩体的抗拉强度在不同的层面倾角下会有较大的差异。为了揭示板岩这种层状岩体抗拉强度的各向异性,基于Hoek-Brown强度准则,结合巴西圆盘平面应力的弹性力学解析解,推导了圆盘随层理角度变化的抗拉强度公式。通过对不同层理角度下的试件进行单轴和巴西劈裂试验,获得了抗拉强度公式中的参数,得到了板岩抗压强度各向异性度为3.94~4.87,抗拉强度各向异性度为2.86~3.15,且抗压(抗拉)强度呈现两端大中间小的趋势。此外,该抗拉强度公式能较好地反映板岩在含有层理面时强度随变化的规律。  相似文献   

16.
采用离散元软件PFC2D模拟软硬互层岩体渐进破裂过程,研究倾角、软硬层厚比和围压对其力学特性及变形特性的影响。研究结果表明:(1)软硬互层岩体抗压强度、黏聚力、内摩擦角和弹性模量随岩层倾角的增加先减小后增大,随围压的增加逐渐增大,随软层厚度的增加逐渐减小;(2)软硬互层岩体强度与其单结构面理论强度分布规律大致相同,但实际强度没有保持不变的倾角范围,且在最不利破坏倾角α=π/4+φj/2附近的变化幅度也没有单结构面理论强度明显;(3)硬层中生成贯穿层理面裂隙所需应变随软层厚度增大,增大岩体裂隙数量发展速度随岩体倾角的增加先增加后减小,在45°或60°时达到峰值,围压增大,岩体裂隙发展越充分;(4)软硬互层岩体在岩层倾角0°时为贯穿层理面的张剪破坏,在30°~60°时为沿层理面的剪切滑移破坏,90°时为沿层理面和局部贯穿层理面的复合张剪破坏;(5)围压的增大会诱发岩体发生剪切破坏,而软层厚度的增加可增强岩体破坏时的完整性。  相似文献   

17.
裂隙是影响岩石或岩体压、拉、剪等力学性能的重要因素之一。文章通过对含裂隙的白云岩试件进行单轴压缩试验,分析了不同裂隙优势角(0°、15°、30°、45°、60°、75°、90°)、裂隙数量密度及裂隙长度密度对白云岩抗压性能的影响。试验得出:(1)当裂隙优势角α=30°时,白云岩的屈服强度σq取得最小值25.29 MPa,当α=90°时σq取得最大值109.66 MPa,且α与σq符合先减后增的二次函数变化趋势;当α=30°时,白云岩的失效强度σs取得最小值61.65 MPa,当α=90°时σs取得最大值128.70 MPa,且α与σs符合先减后增的二次函数变化趋势;当α=30°时,白云岩的弹性模量E取得最小值32.10 GPa,当α=90°时E取得最大值75.65 GPa,且α与E符合先减后增的二次函数变化趋势。(2)随着裂隙数量密度ρs的增大,屈服强度σq呈先减后增再急剧减小的三次函数变化趋势,失效强度σs呈先增后减的二次函数变化趋势,弹性模量E呈先增后减的二次函数变化趋势。(3)随着裂隙长度密度ρc的增大,屈服强度σq与失效强度σs均呈逐渐减小的对数函数的衰减趋势变化,而弹性模量E呈先增后减再急剧增加的三次函数变化趋势。  相似文献   

18.
软硬互层盐岩变形破损物理模拟试验研究   总被引:3,自引:0,他引:3  
 针对我国盐岩地层的地质赋存特征,开展一系列物理模拟试验,探讨倾角、夹层和界面对软硬互层盐岩变形破损的影响规律。试验结果及理论分析表明:(1) 软硬互层盐岩的单轴抗压强度随倾角变化呈两边高、中间低的U形变化规律。(2) 软硬互层盐岩的破坏模式:层面倾角θ<30°时,为脆性硬夹层主控的整体破坏;45°<θ<75°时,为弱夹层或弱界面主控的剪切滑移破坏;85°<θ<90°时,为硬夹层劈裂破坏,局部弱夹层剪切破坏。(3) 沿弱夹层和弱界面的剪切滑移破坏是软硬互层盐岩单轴抗压强度呈现U形变化规律的内在原因。因此,设定储气库的运行压力时,需要着重考虑腔壁肩部和腰部弱夹层和界面的抗剪强度,防止其达到破坏强度而导致腔体破损,从而避免因气体泄漏而引发事故。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号