首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In large, slow, cross‐head marine diesel engines research has increasingly shown that the lubrication regime between piston rings and cylinder liner at top dead centre is of the boundary lubrication type due to the high gas pressure, low sliding speed, and high temperature. This means that the tribological properties of piston ring, cylinder liner, and cylinder lubricant in these types of engine under boundary lubrication conditions should be considered simultaneously when friction and wear between the piston ring and cylinder liner are studied. Until now there has been no standard method to evaluate boundary lubrication performance. There are a few traditional methods used in lubricant research, but their results are not correlated with service conditions. It is important to find a suitable method to evaluate the boundary lubrication performance of lubricants at the laboratory testing stage or before the engine testing stage. The important parameters, such as sliding speed, normal load, materials of the contacting pairs, and lubricant, need all to be controlled. In this paper a systematic experimental procedure, the ‘five times heating and cooling test’, is introduced to assess lubricant properties under boundary lubrication conditions. Most of the parameters mentioned above are controlled. The model contact, of pin‐on‐plate form, is made from the actual piston and liner materials used in a large‐bore, slow, cross‐head marine diesel engine. The temperature characteristics of different blends of lubricants are investigated under boundary lubrication conditions using a pin‐on‐plate reciprocating test rig. These blends of lubricants have the same additives but different base fluids; they nevertheless fulfil the physical and chemical requirements of a real marine diesel engine. The test temperature range is from room temperature to the working temperature of the top piston ring. The experiments show that there are different temperature—friction characteristics for lubricants with different bases and the same additive package and there are also different temperature—friction characteristics during heating up and cooling down for each blend. Single‐base lubricants have more promising temperature—friction characteristics than those of a blend of a high‐viscosity base and a low‐viscosity base at high temperature.  相似文献   

2.
在内燃机实际运行中,润滑油的粘度直接影响到润滑油膜的状态,因而活塞环在缸套中不同位置时的摩擦、润滑状态各不相同。文中以缸套活塞环为研究对象,建立了润滑计算模型,并运用该模型对缸内压力、温度、油膜厚度和摩擦系数进行了分析。结果表明,润滑油膜厚度和摩擦系数随转速改变而发生变化,而剪切稀化导致润滑油粘度减小是引起该变化的主要原因。最后,通过对计算结果的分析,提出了适用于缸套活塞环的润滑油粘度指标。  相似文献   

3.
Liu  K.  Liu  X.J.  Gui  C.L. 《Tribology Letters》1998,5(4):309-312
The scuffing failure phenomenon of piston ring–cylinder liner is studied theoretically and experimentally. The load and bulk temperature when scuffing failure occurs are measured under different engine speed, lubricant, and environmental temperature in a bench test. Based on the experimental results, the asperity capacity when scuffing occurs is evaluated. Surface contact temperature is determined with the measured bulk temperature and the surface flash temperature calculated by Blok theory. The scuffing failure threshold of piston ring–cylinder liner is established by using specific oil film thickness. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
基于二维平均流量模型和微凸体接触模型,研究了活塞环的二维润滑特性,并考虑了活塞系统偏摆、润滑油粘度变化及表面粗糙度等因素的影响。通过计算获得了活塞环-缸套间油膜厚度的二维分布。结果表明,油膜厚度沿周向是不均匀的。本文还对活塞环开口位置及偏摆的影响做了定量的分析。  相似文献   

5.
A two-dimensional analysis for piston ring lubrication is presented by considering elastic deflection, EHL and cavitation effects. A numerical procedure is developed for solving hydrodynamic pressure and oil film, thickness shape due to ring deflection and elastic deformation. An elliptic cylinder liner and elastic ring are considered to investigate the circumferential flow effect which has been ignored in previous studies. Results for a typical automotive engine demonstrates that the elastic deflection and deformation of the piston ring have a tendency to reduce the gap caused by the noncircular cylinder. Under the high combustion chamber pressure, the minimum film thickness tends to have a uniform value in the circumferential direction. In turn, this provides a level of control of circumferential flow when the combustion chamber pressure is low. However, the elastic deflection of the piston ring always creates a potential for large blow-by around the piston ring gap area when the cylinder is non-circular. The two-dimensional analysis presented also reveals a reduction of piston ring oil film thickness due to the circumferential flow compared to one-dimensional analysis.  相似文献   

6.
The friction and wear between the piston and cylinder liner significantly affects the performance of internal combustion engines. In this paper, segments from a commercial piston/cylinder system were tribologically tested using reciprocating motion. The tribological contact consisted of aluminium alloy piston segments, either uncoated, coated with a graphite/resin coating, or an amorphous hydrogenated carbon (a‐C : H) coating, in contact with gray cast iron liner segments. Tests were conducted in commercial synthetic motor oils and base stocks at temperatures up to 120°C with a 2 cm stroke length at reciprocating speeds up to 0.15 m s−1. The friction dependence of these piston skirt and cylinder liner materials was studied as a function of load, sliding speed and temperature. Specifically, an increase in the sliding speed led to a decrease in the friction coefficient below approximately 70°C, while above this temperature, an increase in sliding speed led to an increase in the friction coefficient. The presence of a coating played an important role. It was found that the graphite/resin coating wore quickly, preventing the formation of a beneficial tribochemical film, while the a‐C : H coating exhibited a low friction coefficient and provided significant improvement over the uncoated samples. The effect of additives in the oils was also studied. The tribological behaviour of the interface was explained based on viscosity effects and subsequent changes in the lubrication regime, formation of chemical and tribochemical films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
电液锤液气缸活塞密封采用由PTFE制造的格莱圈密封,在使用中液压油会窜入气腔,导致气体压力升高。本文分析了由于缸体膨胀、密封失效而发生窜漏的两种原因,即液膜流过密封环时在气腔积聚和收锤造成的压力冲击。并提出了在格莱圈后安装Yx圈的改进措施。  相似文献   

8.
为了研究机车柴油机缸套活塞环材料的摩擦学性能,我们设计并制造了一台往复式摩擦磨损试验机。该试验机可在一定范围内实行载荷、速度、润滑量的单因素控制,并可同时定性和定量的显示运动中的摩擦力大小。我们利用该试验机对美国GE公司采用的软氮化铸铁缸套—表面镀铬铸铁活塞环材料进行了摩擦学性能的试验研究,得出了该配对副在往复滑动中摩擦系数随载荷和速度变化的关系曲线。  相似文献   

9.
为降低发动机润滑油消耗以及由此带来的排放,活塞环缸套系统一般处于贫油润滑状态,特别是顶环与缸套间的贫油状况更严重。贫油状态下,活塞环-缸套间润滑油膜在出口区破裂后很难再形成,同时在燃烧上止点附近的高边界压力下气体承载也难以忽略。因此,以某柴油机顶环-缸套系统为分析对象,基于平均雷诺方程和无再形成边界条件,分析贫油和高边界压力下顶环-缸套界面间的润滑、接触和气体承载问题。研究结果表明,贫油工况下,由于油膜破裂后没有再形成,高边界压力的影响显著,对高爆压强化机型来说顶环-缸套间的气体承载力甚至会大于油膜承载力和接触承载力。  相似文献   

10.
内燃机缸套失圆对缸内机油消耗的影响   总被引:2,自引:0,他引:2  
以某4缸4冲程内燃机缸套―活塞环摩擦副为研究对象,考虑实际工况下缸套内壁的非圆周向轮廓,研究缸套失圆对缸内机油耗的影响。计算活塞环与失圆缸套之间油膜厚度沿截面圆周方向的分布,然后分析缸内机油消耗的主要途径,建立润滑油缸内消耗的数学模型,计算失圆缸套的缸内机油耗,并通过与理想圆形缸套机油耗的比较,讨论分析失圆缸套对机油耗的影响。结果表明:失圆缸套与活塞环之间润滑油膜厚度的周向分布呈现明显的非均匀性,总体而言,失圆缸套的不同截面油膜周向均值较对应的理想圆形缸套的油膜厚度大一些。失圆缸套通过活塞环与缸套之间刮油作用、惯性甩油和开口间隙上窜而带来的润滑油消耗量大于理想圆形缸套的机油消耗量。考虑缸套失圆计算的机油耗更接近与实际机油耗,缸套失圆是内燃机机油耗计算中不可忽略的一个重要因素。  相似文献   

11.
An optical technique (three‐dimensional spacer layer imaging) has been developed to map accurately lubricant film thickness in thin‐film elastohydrodynamic (EHD) contacts. This experimental technique has been used to study the influence of surface roughness features, asperity height, and slope on EHD film thickness and pressure. Single ridges transverse to the entrainment direction were used to represent asperities. It was found that the ridges with lower slopes generate films of greater minimum thickness. Below a certain entrainment speed, the minimum film thickness declined at a rate dependent on the ridge slope. At low speeds, the ridges with higher slopes entrapped a larger volume of lubricant ahead of the ridge and along the entrainment direction. For all speeds, the highest ridges entrapped the most lubricant. Both ridge slope and ridge height had a negligible effect on mean film thickness in the contact. Asperity pressure increased with higher ridge slope, but was not influenced by entrainment speed. An increase in pressure was found where lubricant is entrapped upstream of a ridge.  相似文献   

12.
应用竞选算法的缸套微坑结构参数优化   总被引:1,自引:0,他引:1  
在薄壁缸套表面的微坑结构参数影响分析基础上,确定了影响动力润滑的设计变量,以瞬时最小油膜厚度最大化和润滑油损耗量最少为优化目标,建立了优化模型。将竞选算法用于缸套微坑结构参数优化求解,很快地获得全局优化解,结果表明该方法是可行的。  相似文献   

13.
过大的径向力是影响液压缸使用寿命的重要因素。该文介绍了一种低速重载液压缸,该液压缸采用辅助支承以及将活塞杆受推杆作用的作用点移至活塞与端盖上的导向套之间,能够极大地减小活塞与活塞杆所受的径向力,从而避免导向套磨损严重、拉缸、密封损坏、内泄大、端盖处有外泄等故障的发生,提高了液压缸的使用寿命。  相似文献   

14.
应用RIM-FOS测量柴油机缸套-活塞环油膜厚度的可行性分析   总被引:1,自引:0,他引:1  
提出了一种应用反射式强度调制型光纤传感器(RIM-FOS)测量柴油机缸套-活塞环油膜厚度的新方法。介绍了反射式强度调制型光纤传感器的结构和工作原理,并给出了应用RIM-FOS检测柴油机缸套-活塞环油膜厚度的可行性分析和检测装置的设计概要。  相似文献   

15.
C.J. Cudworth  G.J. Mennie 《Wear》1981,67(3):361-373
An analytical solution to the elastohydrodynamic lubrication of a rigid cylinder sliding on an elastic layer which is bonded to a rigid substrate is presented. The central film thickness is predicted by assuming that the lubricant film may be divided into a curved inlet region and a central tilted pad region. Expressions for pressure and deformation derived from the dry contact formulae are used to enable compatibility of pressure between the two regions to be established. The computed lubricant pressure distribution is compared with that for indentation in dry contact under the same load. The film thickness results under heavy loads indicate similar trends to those obtained by alternative solutions.  相似文献   

16.
Polyamides, polyesters and polyacetals are often used in line contacts under reciprocating or continuous sliding. These contacts are simulated on cylinder‐on‐plate (COP) or block‐on‐ring (BOR) tribotests. Comparative tests for pure, oil‐filled and solid lubricated polymers at 100N and 0.3m/s are presented for relative material classification. Differences are discussed according to the sliding geometries. Thermal effects dominate friction and wear behaviour: the polymer glass transition temperature is exceeded in COP tests while the temperature is lower in BOR tests. Thick and brittle films are observed for pure polymers in BOR tests, promoting higher friction. The test configuration is mainly important for evaluation of internal lubricants. The efficiency of oil‐lubricated polymers is not demonstrated in COP tests, while solid lubricants are not efficient in BOR tests. Deformation restricts the diffusion of oil lubricants in COP tests while solid lubricants are deposited on the polymer surface rather than being incorporated in the transfer film in BOR tests. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
将普通CD40润滑油作为基础润滑油,在3种不同的载荷作用下,对含有金属陶瓷添加剂润滑油对汽缸套-活塞环摩擦磨损特性的影响进行了模拟试验研究,并与实际使用的普通CD40润滑油的试验结果进行了比较。研究结果表明,汽缸套-活塞环摩擦副在这种添加剂作用下,其磨损失重及摩擦因数都大幅度降低。摩擦副表面扫描电镜分析结果也表明,这种添加剂使摩擦表面更光滑,其本身具有表面自修复作用。  相似文献   

18.
柴油机滑动轴承热流体动力润滑仿真研究   总被引:1,自引:1,他引:0  
根据径向滑动轴承热流体动力润滑理论,基于JFO理论提出的质量守恒边界条件,建立同时包含油膜完整区和空 穴压力变化的单缸柴油机滑动轴承热流体动力润滑模型,采用有限差分法求解模型方程,仿真分析滑动轴承的油膜厚度、油膜压力、润滑油流量和温度等参数对润滑性能的影响,分析内燃机滑动轴承润滑特性,为轴承润滑可靠性设计提供一定的理论依据.  相似文献   

19.
The bent-axis type of piston pump driven by the piston rod works by the piston rod driving the cylinder block; because of this the taper angle of the piston rod and the swivel angle between the cylinder block and the shaft are important design factors. If these factors cannot satisfy the conditions for optimum design, the friction loss between the cylinder bore and the piston increases, and the pump can fail to work under conditions of severe friction and wear. Since the piston reciprocates in the cylinder bore with high velocity, at the same time rotating on its own axis and revolving on the center of the cylinder block, a decrease of the volume efficiency is generated because of the leakage between the cylinder bore and the piston. Therefore, to prevent this, the piston ring is designed to be at the end of the piston, and the friction characteristics between the piston ring and the cylinder bore require further research due to their great influence on the performance of the piston pump. Thus, in this paper, the elastohydrodynamic lubrication (EHL) analysis of the film thickness, the pressure distribution, and the friction force, have been studied between the piston ring and the cylinder bore in the bent-axis type of piston pump. The analyzed results show that the friction force is influenced by the rotating speed and the discharge pressure.  相似文献   

20.
There are many methods of calculating the properties of lubricated hydrodynamic sliding bearings running at variable loads, but, in some cases, sliding bearings of heavy‐duty machines run under constant load and at variable speeds; this can lead to reduced film thickness in the bearing and boundary lubrication. The minimum oilfilm thickness in such a bearing needs to be calculated so that the proper lubricant viscosity can be selected to reduce solid‐solid contact during machine operation. In this study, a method is presented for calculating the film thickness of sliding bearings operating with alternating rotational directions. The results of the calculations show that the squeeze effect can develop enough load‐carrying capacity to prevent solid‐solid contact between the rubbing surfaces during operation, provided the change of direction of rotation is quick enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号