首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
聚羧酸减水剂的合成及其分散性能   总被引:3,自引:1,他引:2  
黄欣 《精细化工》2011,28(7):719-722
以甲氧基聚乙二醇甲基丙烯酸酯(PMA45)、甲基丙烯酸(MAA)、甲基丙烯磺酸钠(MAS)为单体,以过硫酸铵(APS)为引发剂,采用水溶液自由基聚合法合成了聚羧酸高效减水剂(PC),分析了合成过程中不同单体摩尔比、相对分子质量(简称分子量,以下同)大小对其分散性能的影响。结果表明,单体和引发剂的用量同时影响聚羧酸减水剂分子量和分散性能;当n(MAS)∶n(MAA)∶n(PMA45)=0.5∶3.75∶1,APS用量为单体总质量的0.4%时,产品聚羧酸特性黏度为45.09 mL/g;当水灰质量比为0.25,聚羧酸减水剂掺量为水泥质量的0.2%时,净浆初始流动度达到最大269 mm,30 m in经时流动度为281 mm。  相似文献   

2.
以过硫酸铵为引发剂,以酒石酸改性的马来酸酐(TMA)、烯丙基聚乙二醇(APEG)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为共聚单体,合成聚羧酸高性能减水剂PTAA。以净浆流动度为考查指标,研究了单体配比、引发剂用量、反应温度、反应时间对聚合的影响。结果表明,在MA为0.01 mol、n(APEG)∶n(AMPS)=2.28、引发剂过硫酸铵(APS)的用量为单体总量的3%、反应温度75℃、反应时间3 h时,所合成的减水剂在用量为1.0%时,其净浆流动度可达288 mm。  相似文献   

3.
文章以甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)、甲基丙烯磺酸钠(MAS)为主要原材料,过硫酸铵(APS)作为引发剂,通过正交原理方法合成聚羧酸减水剂。以水泥净浆流动度表征,得出最佳合成工艺:n(TPEG)∶n(AA)∶n(MAS)∶n(APS)=1∶2.0∶0.06∶0.20,反应温度为60℃,滴加反应时间为4 h。然后选做混凝土性能测试、红外光谱分析。研究表明,此工艺合成的聚羧酸减水剂具有良好的缓释效果。  相似文献   

4.
以异丁烯醇聚氧乙烯醚(HPEG)、丙烯酸(AA)和丙烯酸羟乙酯(HEA)为主要原料,过硫酸铵、亚硫酸氢钠复合还原氧化体系为引发体系,疏基乙酸为链引发剂,在微通道反应器内合成了聚羧酸减水剂,利用单因素法考察了各因素对减水剂分散性的影响.确定的最佳工艺为:停留时间为120s,反应温度为45℃,n (AA)∶n(HPEG)为3.5∶1,n(AA) ∶n (HEA)为2∶1,在此条件下下,初始水泥净浆的流动度为258mm,1h后水泥净浆流动度为311mm.  相似文献   

5.
采用聚醚(TPEG)、甲基丙烯酸(MAA)为单体,以过氧化氢为引发剂,十二硫醇为分子量调节剂,在水溶液中共聚合成聚醚接枝的聚羧酸系减水剂。考察了单体摩尔比、引发剂用量、分子量调节剂量、聚合温度及聚合时间等因素对聚醚减水剂分散性能的影响。结果表明,最佳合成工艺条件为:n(MAA)∶n(TPEG)∶n(十二硫醇)∶n(双氧水)=11.20∶2.72∶0.36∶0.20,引发剂用量为单体总质量的0.3%,分子量调节剂占单体总质量的1.0%,反应温度65℃,反应时间4~5 h。在此条件下,合成的减水剂使水泥净浆流动度达到250 mm,对水泥具有良好的分散性。  相似文献   

6.
《应用化工》2017,(7):1300-1305
在微波作用下,以自制活性大单体聚乙二醇丙烯酸酯(PEGAA)、马来酸酐(MAH)、丙烯酰胺(AM)及甲基丙烯磺酸钠(SMAS)为主要原料,过硫酸铵(APS)为引发剂,制备性能优异的酰胺型聚羧酸减水剂,考察各单体用量、微波功率、反应时间等因素对减水剂性能的影响。结果表明,合成酰胺型聚羧酸减水剂最佳工艺为:n(MAH)∶n(PEGAA)∶n(SMAS)=2.5∶1∶0.5,AM、APS质量分数分别为反应物总质量的9%和4%,微波功率300 W及反应时间25 min。与传统的水浴相比,该工艺高效、节能,产品性能优异,在聚羧酸减水剂掺量0.5%条件下,水泥净浆流动度达275 mm,砂浆减水率32.5%,且前期具有缓凝作用,后期对胶砂抗压强度增强显著,具有良好的工业应用前景。  相似文献   

7.
《应用化工》2022,(7):1300-1305
在微波作用下,以自制活性大单体聚乙二醇丙烯酸酯(PEGAA)、马来酸酐(MAH)、丙烯酰胺(AM)及甲基丙烯磺酸钠(SMAS)为主要原料,过硫酸铵(APS)为引发剂,制备性能优异的酰胺型聚羧酸减水剂,考察各单体用量、微波功率、反应时间等因素对减水剂性能的影响。结果表明,合成酰胺型聚羧酸减水剂最佳工艺为:n(MAH)∶n(PEGAA)∶n(SMAS)=2.5∶1∶0.5,AM、APS质量分数分别为反应物总质量的9%和4%,微波功率300 W及反应时间25 min。与传统的水浴相比,该工艺高效、节能,产品性能优异,在聚羧酸减水剂掺量0.5%条件下,水泥净浆流动度达275 mm,砂浆减水率32.5%,且前期具有缓凝作用,后期对胶砂抗压强度增强显著,具有良好的工业应用前景。  相似文献   

8.
以PEG(聚乙二醇)、MA(马来酸酐)、IA(衣康酸)和SMAS(甲基丙烯磺酸钠)为共聚单体,制备PEGMMA(马来酸聚乙二醇单酯)-MA-IA-SMAS四元共聚减水剂;然后将其用于混合土配方中,并以水泥净浆流动度为考核指标,采用单因素试验法优选合成减水剂的最优方案。结果表明:当减水剂中n(PEG)∶n(MA)∶n(IA)∶n(SMAS)=1∶3.8∶0.5∶1.0、酯化温度为105℃、酯化时间为4 h、w(引发剂)=12.5%(相对于单体总质量而言)、w(催化剂)=4%(相对于PEG和MA总质量而言)、聚合温度为80℃和聚合时间为7.5 h时,合成的减水剂和改性混凝土[w(减水剂)=0.33%]具有相对较好的综合性能;此时,水泥净浆初始流动度(278 mm)相对最大,并且混凝土减水率为28.6%、含气量为2.1%以及28 d压缩强度为49.6 MPa。  相似文献   

9.
针对目前混凝土砂石中含泥量高的问题,以自制阳离子单体(MADA)、丙烯酸(AA)、异戊烯醇聚氧乙烯醚(TPEG)为单体,以30%H_2O_2-次磷酸钠(SHP)为氧化还原引发剂,在低温条件下水溶液中通过自由基共聚合成了一种两性聚羧酸减水剂(PCE)。以水泥净浆流动度为评价指标,确定最优合成工艺为:单体物质的量比n(AA)∶n(TPEG)∶n(MADA)为4.0∶1.0∶0.5、30%H_2O_2用量2.0%、m(H_2O_2)∶m(SHP)为2.5∶1、反应温度30℃、单体滴加时间3.0h、保温时间2.5h。采用FTIR表征了两性PCE的分子结构,采用凝胶渗透色谱(GPC)测试了两性PCE的分子量分布,其分子产率达到96.69%。水泥净浆流动度测试结果表明,当水灰比为0.29、两性PCE(M_w为20 180)折固掺量为水泥质量的0.15%时,水泥净浆初始流动度为292mm,60min后的流动度为295mm,具有较好的分散性和分散保持性;当300g水泥中泥土掺量高达5%时,净浆仍具有较好的分散性和分散保持性,表明两性PCE具有较好的抗泥作用。  相似文献   

10.
采用高锰酸钾/草酸(PMn/OX)氧化还原引发体系,以聚乙二醇单甲醚甲基丙烯酸酯(PEMA)、2-丙烯酰胺-2-甲基丙烯磺酸钠(AAMA)、甲基丙烯酸(MA)为单体,实验确定了低温合成聚羧酸型减水剂的最优工艺.实验表明,在室温条件下,PMn/OX用量占PEMA的2%,n(PEMA)∶n(AAMA)∶n(MA) =1∶0.5∶3.5时制备的聚羧酸减水剂,在掺量为0.5%,水灰比为0.3时,水泥净浆流动度可达268 mm,1h坍落度为205 mm.  相似文献   

11.
王志敏 《当代化工》2012,(9):924-926
采用先酯化后聚合方法合成了聚乙二醇接枝聚羧酸钠水泥减水剂,考察了单体配比、滴加时间、磺酸单体种类及用量和反应温度对产品性能的影响.实验结果表明,在滴加时间和保温反应时间都为3.5 h时,合成的减水剂性能良好;当减水剂用量为水泥用量的0.3%时,净浆流动度高达310 mm.由水泥的净浆流动度实验表明,合成的水泥减水剂对水泥具有良好的减水性能.  相似文献   

12.
AA-MAn-AMPS共聚物的合成及其阻垢分散性能   总被引:8,自引:0,他引:8  
首次以水为溶剂,过硫酸铵为引发剂,将丙烯酸(AA) 、马来酸酐(MAn)、2 丙烯酰氨基 2 甲基丙烷磺酸(AMPS) 按一定单体物质的量比进行共聚, 合成了系列AA- MAn- AMPS共聚物。探讨了它们对Ca3(PO4)2 的阻垢率与共聚物用量、共聚物单体物质的量比的关系,研究了共聚物在稳定锌、分散氧化铁方面的性能。结果表明:共聚物B[ n (AA)∶n(MAn)∶n(AMPS) = 70∶20∶10] 对Ca3(PO4)2 具有优良的阻垢分散性能, 当w(Ca2+) =150 ×10-6, w(PO43- )= 6×10- 6,pH=9-0,θ=50 ℃,t = 10 h,共聚物的质量分数=10×10-6 时,对Ca3(PO4)2 的阻垢率达99-45% ;共聚物G[ n(AA)∶n(MAn)∶n(AMPS) =70∶15∶15]则具有良好的稳定锌能力,当w(Zn2+)=10×10-6 ,pH=8-8~9-0,θ= 50 ℃,t = 24 h,共聚物的质量分数= 10 ×10-6 时,对Zn(OH)2 的阻垢率达74-42% 。B、G均具有较好的分散氧化铁性能。AA- MAn - AMPS共聚物可用作工业循环冷却水的阻垢分散剂。  相似文献   

13.
针对西部盐湖地区耐腐蚀混凝土的需求和结合当地实际情况,设计了在干燥环境下与浸水环境下,通过对相对动弹性模量、相对质量、综合评价参数及扫描电子显微镜试验的研究来判断镁水泥混凝土的性能.通过研究发现:采用无损检测试验方法进行为期一年的试验后发现,镁水泥混凝土的6种配合比中性能最好的配合比是配合比2,而它所用材料的比例为:水∶MgO∶MgCl2∶石子∶砂子∶磷肥∶减水剂=1∶2.87∶1.09∶8.57∶4.61∶0.07∶0.12.  相似文献   

14.
陈敏  张春燕  袁新华  张燕  戴起勋 《精细化工》2008,25(1):54-56,61
研究了氯代1-甲基-3-丁基咪唑-三氯化铝([Bmim]Cl-AlCl3)离子液体催化蒽与草酰氯的Friedel-Craft酰基化反应。GC/MS分析发现生成了1,2-苯并苊醌(又名1,2-蒽乙二酮),用GC法考察了不同反应条件对1,2-蒽乙二酮收率和选择性的影响。当AlCl3在[Bmim]Cl-AlCl3离子液体中的摩尔分数为0.67,m{[Bmim]Cl-AlCl3}∶m(蒽)=8∶1,n(草酰氯)∶n(蒽)=2∶1,反应温度45℃,反应时间6 h时,1,2-蒽乙二酮收率为88.2%,选择性可达100%。[Bmim]Cl-AlCl3离子液体5次循环使用后,1,2-蒽乙二酮的收率和选择性仍达88.0%和99.6%。经萃取、重结晶等方法得到了w(1,2-蒽乙二酮)=98.3%的产品,通过熔点测定、GC、GC/MS、FTIR和1HNMR对反应产物进行了定性和定量分析。  相似文献   

15.
以工业甲基萘为原料,通过磺化、水解、缩合与中和反应合成了甲基萘磺酸甲醛缩合物(MNSF),考察了反应工艺参数对产物作为混凝土减水剂的分散性能的影响.结果表明,合成MNSF最优工艺为:n(甲基萘)n∶(浓硫酸)n∶(水解加水量)n∶(甲醛)∶n(缩合加水量)=11∶.25(∶1.25~1.5)0∶.924∶.6;磺化反应温度160~165℃,时间3~3.5 h;水解反应温度110~120℃,时间15~30 min;缩合反应的加醛量与温度是该段影响产品分散性能的主要因素,缩合反应温度110℃,时间4 h;水解前后酸度应控制在30%左右.MNSF在掺量为水泥质量的0.5%时,砂浆减水率达到16%,比萘磺酸甲醛缩合物钠盐(FDN)高4%,抗折和抗压强度与FDN相近.  相似文献   

16.
制备了离子液体[EMIM]BF4,并用于催化合成镇痛消炎药酮咯酸中间体2-苯甲酰吡咯。考察离子液体[EMIM]BF4的催化活性及重复使用性能,研究了原料配比、反应温度和反应时间等工艺条件的影响。较佳工艺条件为:反应物料配比n([EMIM]BF4)∶n(苯甲酰氯)∶n(吡咯)=1.0∶1.0∶1.2,反应温度50℃,反应时间8h。在此条件下,2-苯甲酰吡咯收率达86%以上,纯度达99%。其离子液体可重复利用,经5次利用后产物收率仍在80%以上,并可避免使用有机溶剂。  相似文献   

17.
改性木素磺酸盐泵送剂GCL1-3的制备及性能研究   总被引:4,自引:1,他引:3  
通过研究缓凝高效减水剂GCL1与保水剂、引气剂的配伍性能 ,研制了混凝土泵送剂GCL1- 3。GCL1与保水剂HEC、引气剂复配时 ,改善了水泥净浆的保水性能 ,提高了硬化水泥的早期及后期抗压强度。实验测试了GCL1- 3的水泥净浆流动度、减水率、流动度损失和抗压强度等性能。结果表明 ,当w (水 )∶w(水泥 ) =0 4∶1 0 ,w (GCL1- 3) =0 .5 %时 ,水泥净浆流动度可达2 30mm ,减水率达 18% ,且无离析现象 ;2h内流动度损失仅为 2 4% ,而掺FDN的净浆已经失去流动性 ;w(GCL1- 3) =0 .5 %时 ,水泥净浆硬化 3d、7d、2 8d的抗压强度比分别达 146 %、15 8%与148% ,均高于使用FDN  相似文献   

18.
4,4′-双烷基二苯乙炔类液晶的合成   总被引:2,自引:2,他引:2  
以烷基苯乙酸为原料 ,与POCl3反应得到烷基苯乙酰氯 (Ⅰ ) ,Ⅰ与烷基苯及三氯化铝在n(Ⅰ )∶n(烷基苯 )∶n(AlCl3) =1 0∶5 0∶1 2的条件下反应 1h制得 1 (4 烷基苯乙酰基 ) 4 烷基苯 (Ⅱ ) ,再在ZnCl2 -SiO2 催化作用下 ,Ⅱ与乙酰氯以n(Ⅱ )∶n(AcOCl) =1∶8的比例在二氯甲烷中反应 5h得到 1 氯 1,2 二烷基苯取代乙烯 (Ⅲ ) ,最后Ⅲ与氢氧化钾按n(Ⅲ )∶n(KOH) =1∶8的比例在二甲苯中反应 15h ,合成了 4,4′ 双烷基二苯乙炔 (Ⅳ ) ,总收率达到47%~ 5 2 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号