首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
对新型镍基粉末高温合金FGH98Ⅰ分别进行亚固溶前处理+过固溶和过固溶热处理,利用光学显微镜,场发射扫描电镜和显微硬度仪研究冷却速度对合金组织与显微硬度的影响。结果表明:过固溶处理前的亚固溶前处理使锻态合金中大晶界γ′相发生部分溶解,晶粒稍有长大,对过固溶热处理冷却γ′相析出的影响不显著;随着冷速增加,合金中二次和三次γ′相的尺寸减小,二次γ′相的形状从蝶形向球形转变,γ′相的颗粒密度增大,面积分数减小,在冷却速度≤1.4℃/s时,γ′相分两阶段形核;冷速越快,合金的硬度越高,时效后硬度增高越多。另外,还建立了冷速与γ′相平均尺寸和合金硬度之间的函数关系式。该结果为FGH98Ⅰ合金实际双性能盘固溶热处理工艺的选择提供了理论参考。  相似文献   

2.
对新型镍基粉末高温合金(FGH98Ⅰ)在不同温度下进行固溶热处理,采用热力学相计算、光学显微镜、场发射扫描电镜及化学相分析等研究了亚固溶和过固溶合金的析出相和显微组织,并综合分析了组织与性能的关系。结果表明:FGH98Ⅰ合金经1130℃亚固溶和1190℃过固溶处理后的析出相均为γ’、MC、M23C6和M3B2等,未发现TCP(拓扑密堆)相。FGH98Ⅰ合金亚固溶热处理后晶粒稍有长大,存在尺寸不同的初次、二次和三次γ′相;过固溶热处理合金的晶粒明显长大,存在单模分布的二次γ′相;前者由于晶粒较小使强度更高,后者因减小二次γ′相尺寸和消除初次γ′相,PPB(原始颗粒边界)和残余枝晶,提高了合金的高温塑性和持久性能,说明不同晶粒尺寸和γ′相特征是FGH98Ⅰ盘件获得双性能的关键因素。  相似文献   

3.
为消除粉末冶金高温合金FGH4097中存在的原始颗粒边界(PPB),采用Thermo-Calc热力学计算软件对FGH4097合金系进行热力学计算,并进行相应的组织观察与能谱分析,重点研究了铪(Hf)在FGH4097合金中的分布规律以及Hf对析出相的影响,特别是分析了Hf对合金中PPB的影响规律。结果表明,FGH4097合金中Hf主要存在于MC、MB2和γ’相中,Hf能促进MC相和γ’相的析出,有效地抑制M6C和M23C6型碳化物的形成。Hf质量分数为0.30%时消除了FGH4097合金中的PPB。  相似文献   

4.
FGH97(FGH4097)合金为镍基γ'相沉淀强化型粉末冶金高温合金,基体为γ相,是我国研制的新型粉末高温合金,该合金在650~750℃温度区间具有优异的综合力学性能,广泛应用于先进航空发动机的涡轮盘、篦齿盘等关键热端部件的制造。  相似文献   

5.
研究了FGH96粉末高温合金经750℃长期时效1000和3000 h后的晶粒尺寸、晶界形貌、晶粒取向、γ'强化相和碳化物的演变规律及长期时效对合金650℃使用温度下拉伸性能的影响.结果 表明:750℃长期时效对合金的晶粒尺寸、晶界形貌和晶粒取向没有明显影响.然而,长期时效后,合金中γ '相形貌、尺寸和分布发生了显著的变化,大尺寸γ'相先长大后分裂再变小,平均尺寸变大、尺寸梯度降低、间距变大,由双峰分布最终演变为单峰分布;形貌由近球形、方状和蝶状先演变为不规则状,最终又演变回近球状、方状与蝶状.未长期时效合金的晶内和晶界处存在大量富含Ti、Nb元素的块状MC型的碳化物,并与MB型硼化物共存,经750℃长期时效3000 h后没有明显变化.而富含Cr元素的M23C6型小颗粒碳化物经750 ℃长期时效3000 h后,析出量增加并呈链状分布于晶界.长期时效后,FGH96合金650℃拉伸强度降低,塑性提高,主要原因是合金中的γ'相分裂、粗化及晶界处M23C6型碳化物析出呈链状分布所致.  相似文献   

6.
对新型镍基粉末高温合金FGH98Ⅰ分别进行过固溶和过固溶+亚固溶后处理,利用场发射扫描电镜和显微硬度仪研究了冷却速度对合金γ′相析出和显微硬度的影响。结果表明:随着固溶冷却速度增加,合金中二次和三次γ′相的尺寸减小,二次γ′相形状从蝶形向球形转变,γ′相的形状因子和颗粒密度增大,面积分数和晶界表观宽度减小。在冷却速度≤1.4℃/s时,冷却γ′相分两阶段形核;冷速越快,合金的硬度越高,时效后硬度增高越多;过固溶处理后的亚固溶处理使冷却γ′相粗化和方形化,形状因子减小,晶界γ′相析出密集区消失,硬度降低。另外,还建立了冷速与γ′相平均尺寸和合金硬度之间的函数关系式。该结果为FGH98Ⅰ合金实际双性能盘固溶热处理工艺的选择提供了理论参考。  相似文献   

7.
结合FGH97合金的制备工艺,采用显微组织观察等手段,对合金的显微组织进行了分析研究与讨论,结果表明,直接热等静压成形的FGH97合金的晶粒组织均匀,晶粒度为6~7级;合金中的Hf元素对减少合金中的原始颗粒边界(PPB)有着显著作用,同时,Hf元素会进入γ'相和碳化物,提高γ'相的强度和碳化物的稳定性;合金的显微组织具有弯晶特点,这对合金的塑性和韧性非常重要.  相似文献   

8.
针对涡轮盘的使用温度,研究了FGH97合金在700℃度下长时时效过程中的显微组织和力学性能变化。利用扫描电镜、物理化学相分析、热力学计算等方法研究了长时时效处理过程中析出相的演变。结果表明,合金中的一次和二γ'相组织稳定性良好,三次γ'相发生了较明显的粗化,合金中未发现明显的的TCP相析出。对合金2000 h和5000 h长时时效处理后的力学性能测试表明,长时时效后合金的综合力学性能优异。  相似文献   

9.
采用光学显微镜、扫描电镜和力学性能测试等研究了一种新型镍基变形高温合金经亚固溶再分别进行3种不同单级时效(730 ℃x8 h,AC;730℃x 16 h,AC;760℃x8 h,AC)处理后的组织、性能及长期组织稳定性.结果表明:3种时效制度后新型合金的晶界一次γ'相、晶粒组织无显著差异,仅是晶内二次γ'相尺寸略微增大,760 ℃时效较730℃下延长时效时间的长大更明显;室温下硬度、750℃拉伸强度也基本相当,进一步说明3种不同时效制度对合金的晶粒、强化相等的影响较小,进而对力学性能的影响也较小;此外,730℃x8 h、760℃x8 h两种不同时效制度后的新型合金,在750 ℃下长期时效的组织稳定性存在一定差异,760℃时效对应的强化相γ'粗化程度稍大,硬度值下降也略微明显,其内部组织可能更为复杂.  相似文献   

10.
粉末高温合金挤压变形组织及变形机理研究   总被引:4,自引:2,他引:2  
挤压能够提高材料的力学性能,改善材料的组织状态,并为后续的变形提供性能优良的坯料.本文通过对粉末高温合金(FGH96合金)挤压变形,获得了组织良好的挤压棒材.采用徕卡DMLM显微镜对显微组织进行了观察分析,结果表明:挤压变形后,FGH96合金的原始颗粒边界得到了破碎,再结晶后获得了细小、均匀的等轴晶,晶粒尺寸为3μm~10um.通过对γ'相的分布和形貌观察,结果表明:挤压变形后,γ'相得到了破碎,并均匀分布在晶粒边界.同时,采用JEM-2010EX透射电子显微镜(TEM)对挤压试样的塑性变形机理及规律进行了观察研究.  相似文献   

11.
采用场发射电镜观察不同温度和时间时效后FGH97合金的显微组织,总结3种不同尺寸γ’相的演化规律。结果表明:不同温度下,随时效时间增加,一次γ’相和二次γ’相平均尺寸均存在最大值,三次γ’相平均尺寸均呈线性增长。550℃时效后二次γ’相分裂明显,由立方形长大为不规则形,分裂成田字花瓣形或蝶形,而后分解为小立方形,沿一定方向排列。而750℃时效后期,二次γ’相出现边界融合现象,且小三次γ’相聚集长大。γ’相尺寸变化导致时效后硬度值的变化。  相似文献   

12.
研究了GH4145合金螺栓560 ℃时效处理后,显微组织、晶粒尺寸及γ'相形态的变化。试验结果表明:供货态GH4145合金螺栓560 ℃时效处理50 h,小尺寸晶粒数量显著增多,碳化物析出相数量有所减少,析出大量细小的球状γ'相;相对于时效处理50 h试样,时效100 h小尺寸晶粒和细小的球状γ'相显著长大;时效时间延长晶粒尺寸基本保持不变,球状γ'相最终达到尺寸均一化;时效过程中方形γ'相逐渐分解直至消失。  相似文献   

13.
采用光学显微镜、扫描电子显微镜和电子探针显微分析研究了热挤压镍基粉末冶金超级合金FGH96与304不锈钢(304SS)之间的界面,研究了 304SS包覆层对挤压态FGH96合金表层组织的影响.结果表明,两合金间的界面结合良好,无缝隙或空洞.在FGH96合金表层生成一条尺寸约500nm的TiC颗粒相流线,TiC颗粒相的形...  相似文献   

14.
在真空定向凝固炉中采用螺旋选晶法制备了一种镍基单晶高温合金,固溶处理后分别采用1080、1120、1160和1200℃不同的温度进行一次时效,然后在相同工艺下进行二次时效,研究一次时效温度对合金组织和1100℃/140 MPa条件下持久性能的影响。研究表明,随一次时效温度升高,γ'相的尺寸增大,体积分数先增加后减少,在较高温度时效后γ基体通道中有细小的二次γ'相析出,立方化程度先增加后因在1200℃下时效后有部分γ'/γ相界面变为锯齿状而降低。随着一次时效温度提高,合金的持久寿命先增加后降低,在1200℃下时效后持久寿命最低。在1080、1120和1160℃时效后,γ'相在持久过程中形成了完善细密的筏排组织,而在1200℃时效后,γ'相在持久过程中形成了非常不规则的粗化组织。合金在1120℃进行一次时效,合金的组织和持久性能最佳。  相似文献   

15.
采用喷射成形(SF)+热等静压(HIP)+等温锻造(IF)+热处理(HT)工艺制备第三代粉末高温合金FGH100L。研究固溶热处理温度和制备工艺对FGH100L合金的显微组织与力学性能的影响。结果表明,SF+HIP+IF态FGH100L合金显微组织对固溶温度的变化非常敏感,随固溶温度的升高(1110~1170℃),合金的晶粒尺寸长大,γ'强化相的尺寸先增加后减小,其硬度、室温/高温拉伸强度和塑性均呈先增大后减小的趋势。在固溶温度为1130℃时,FGH100L合金中3种尺寸的γ'相的数量平衡匹配较为合理,合金的显微组织特征最佳,合金的硬度和室温/高温拉伸性能均最高。且该温度下,FGH100L合金经SF、SF+HIP+HT和SF+HIP+IF+HT不同工艺处理后,晶粒尺寸先增大后减小;晶粒形貌发生了近球形-多边形-近球形的转变;SF+HIP+HT态合金晶粒尺寸增大,晶界弯曲程度较低。由于SF+HIP+IF+HT工艺使FGH100L合金发生再结晶,细化了晶粒,出现链状组织,形成弯曲晶界,合金具有更高的屈服强度;在SF+HIP+HT和SF+HIP+IF+HT工艺下合金的室温拉伸断口从沿晶脆性断裂转变为穿晶-沿晶混合断裂,高温拉伸断口为沿晶断裂。  相似文献   

16.
对固溶后的GH720Li合金在不同的介质(空气、油、水)中冷却,再经过时效处理。利用光学显微镜(OM)和场发射扫描电镜(FESEM)研究了冷却介质对GH720Li合金的晶粒尺寸、冷却γ'相分布和力学性能的影响规律。结果表明,冷却介质对GH720Li合金晶粒尺寸和一次γ'相无影响,主要影响冷却γ'相(二次和三次γ'相);随着冷速的提高(空冷油冷水冷),γ'相平均尺寸关系为空冷油冷水冷,室温和高温强度关系为空冷油冷水冷;在能满足强度和塑性的前提下,为减少因热应力而造成盘件变形甚至开裂的风险,宜采用油冷。  相似文献   

17.
研究了含Hf(0~0.89%)的FGH4097粉末高温合金中拓扑密堆μ相的析出动力学、组织形态以及μ相对Hf含量为0.30%的合金盘坯力学性能的影响.结果表明,Hf含量为0.30%和0.89%的合金,经750~900℃长期时效后μ相已明显析出.随着时效温度的升高、时效时间的延长以及Hf添加量的增加,μ相析出量增加且尺寸长大.μ相主要在晶内以长条片状形态析出.Hf含量为0.30%的FGH4097合金盘坯在550~650℃长期时效后未出现μ相,高温拉伸性能和高温持久性能没有降低,组织稳定性良好.750℃长期时效后,盘坯中析出了μ相,析出的μ相对高温拉伸强度无明显影响,有助于提高高温拉伸塑性,降低了高温持久寿命,高温持久塑性提高约30%.详细讨论了μ相的析出行为、g固溶体中合金元素的再分配以及合金断口特征.解释了μ相对力学性能影响的脆-韧双重作用机理,并提出控制和避免μ相大量析出造成性能劣化的措施和方法.  相似文献   

18.
热处理对定向镍基高温合金DZ951γ''相的影响   总被引:2,自引:0,他引:2  
采用光学显微镜和SEM研究了热处理对定向镍基高温合金DZ951组织的影响.结果表明选择合适的热处理工艺,能使铸态合金中较大的错配度减小甚至消失.固溶温度越高,γ'相的尺寸越大.在1200℃及其以上温度固溶处理时,γ'才能完全固溶于基体.固溶温度相同时,随着保温时间的延长,γ'相的尺寸增大.在1220℃固溶后进行时效处理,随着时效温度的升高,析出γ'相的尺寸增大.时效温度越高,γ'相的长大趋势越明显.合金经固溶处理和二级时效处理后,可获得两种尺寸的γ'相.  相似文献   

19.
用光学显微镜和扫描电镜观察和分析了β时效对GH783低膨胀高温合金组织的影响,测试了合金的力学性能.结果表明,GH783合金在845 ℃进行时效处理后晶界上分布着链状二次β相,合金由两种尺寸的γ'相组成;未进行β时效处理的合金只析出一种尺寸的γ'相,尺寸比较小.并且β时效处理的合金其抗拉强度和塑性、持久塑性明显优于未β时效处理合金.β相在提高合金强度的同时,可大幅度提高合金的塑性.  相似文献   

20.
FGH95合金中γ'相稳定性研究   总被引:3,自引:0,他引:3  
利用扫描电镜和透射电镜观察分析了热等静压HIP FGH95高温合金经热处理后,基体中γ'相的形貌、分布和稳定性.结果表明:合金经热处理后基体为再结晶晶粒与原始枝晶的混晶组织.基体中除了晶界上分布的固溶处理未溶的棒状γ'相颗粒外,在再结晶晶粒内部还存在有大、中、小3种尺寸的γ'颗粒,其中大的方形γ'相颗粒尺寸约为0.5~0.8 um,并呈8个一组排列,此8个一组排列的γ'颗粒是由合金在1160℃固溶冷却过程中所形成的单个高温γ'相分裂而形成.进一步观察发现,分裂后的方形γ'相颗粒在后续热处理过程中又发生了不稳定分解,在其颗粒内部有细小γ'相的重新析出,并且随着新析出γ'相的长大原来的方形γ'相颗粒逐渐消失.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号