首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
蒋英超 《电子工程师》2007,33(5):31-32,63
介绍了DDS(直接数字频率合成)技术及PLL(锁相环)频率合成技术的工作原理及特点,给出了现代电台设计中基于DDS的频率合成器的设计方案.采用DDS输出作为参考的PLL频率合成器非常适合用做现代电台的本振.  相似文献   

2.
提出一种基于直接频率合成技术(DDS)的锁相环(PLL)频率合成器,该合成器利用DDS输出与PLL反馈回路中的压控振荡器(VCO)输出混频,替代多环锁相频率合成器中的低频率子环,使合成器输出频率在89.6~110.4 MHz之间分辨率达1 Hz,并保持DDS相噪、杂散水平不变。结合DDS的快速频率切换和PLL环路跟踪能力,实现信号的快速跳频。本文给出了技术方案,讨论部分电路设计,并对主要技术指标进行理论分析,最后给出了实验结果。  相似文献   

3.
本文对比分析了现在广泛应用的几种频率合成技术,根据短波跳频电台的技术特点,实现了一种直接数字频率合成(DDS) 锁相环路(PLL)频率合成器的设计。它采用DDS输出作为PLL参考源的方法,实现了短波电台100Hz的频率间隔以及跳频系统所要求的快速频率转换和低相位噪声的统一。  相似文献   

4.
与PLL频率合成器相比较 ,数字频率合成器 (DDS)有合成频率相对范围宽、频率切换时间短、合成频率精度高等优点 ,因而应用较广。但由于DDS的数字特征 ,DDS输出的频谱特性不易分析。文章在阐述DDS(以SIN输出DDS为例 )结构和工作原理的基础上 ,引导出一种DDS频谱的分析方法 ,谨供DDS的使用者参考。  相似文献   

5.
本文在介绍当前通信系统中广泛采用的几种频率合成技术的基础上,针对直接数字式频率合成器(DDS) PLL频率合成器中的DDS输出噪声被数字倍频环放大从而影响频率合成器的噪声性能的问题,提出一种改进的方案。  相似文献   

6.
引言直接数字频率合成(DDS)在过去十年受到了频率合成器设计工程师极大的欢迎。首先被认为是一种具有低相位噪声和优良杂散噪声性能的灵活的频率源,基于DDS的频率合成器在许多应用中能比基于锁相环(PLL)的频率合成器有显著的优势。这些优势包括亚赫兹频率控制分辨率、相位失调和输出幅度控制,以及无需基于PLL频率合成器设计所需要的外部元件。另外,作为一个基于数字的波形发生器,其频率、相位和幅度的改变可以通过一个简单的可编程端口来实现。这种能力允许DDS技术用于多种民用和军事应用中,包括那些要求复杂的多通道同步的应用,例如,…  相似文献   

7.
周斌  曾桂根 《电子设计工程》2013,21(13):184-186,190
为了研制一种锁定时间短、相位噪声低、杂散抑制度高的频率合成技术,采用了直接数字式频率合成器(DDS)驱动锁相环(PLL)的结构。该频率合成器综合了DDS频率转换速度快、频率分辨率高和PLL输出频带宽、输出杂散低的优点。基于该结构研制实现了输出频率范围为700~800 MHz的宽带频率合成器,实验结果表明该频率合成器扫描模式Δf=1 MHz锁定时间不超过20μs,跳频模式Δf=50 MHz的定时间不超过30μs,近端杂散抑制度优于-50 dBc。  相似文献   

8.
一种基于DDS和PLL技术本振源的设计与实现   总被引:3,自引:2,他引:1  
现代频率合成技术正朝着高性能、小型化的方向发展,应用最为广泛的是直接数字式频率合成器(DDS)和锁相式频率合成器(PLL).介绍直接数字频率合成器和锁相环频率合成器的基本原理,简述用直接数字频率合成器(AD9954)和锁相环频率合成器(ADF4112)所设计的本振源的实现方案,重点阐述了系统的硬件实现,包括系统原理、主要电路单元设计等,并且对系统的相位噪声和杂散性能做了简要分析,最后给出了系统测试结果.  相似文献   

9.
王磊  刘振兴 《信息通信》2009,(3):11-13,16
直接数字合成(DDS)是近年发展起来的一种新型合成技术.有频率分辨率高.转换时间短.相位噪声低等特点.与锁相合成技术IPLL)配合.可以设计出频带宽.分辨率高的频率合成器.本文介绍了一种DDS+PLL的混合结构.实现了一个高稳定度的锁相频率合成系统.  相似文献   

10.
直接数字频率合成(DDS)在过去十年受到了频率合成器设计工程师极大的欢迎。首先被认为是一种具有低相位噪声和优良杂散性能的灵活的频率源,基于DDS的频率合成器在许多应用中能比基于锁相环(PLL)频率合成器有显著的优势。这些优势包括亚赫兹频率控制分辨率,相位失调和输出幅度控制,  相似文献   

11.
跣频频率合成器是跳频收发系统设计的核心,也是技术实现的一个难点.提出一种应用DDS和PLL实现高速跳频的频率合成设计方案,并对其硬件进行了详细设计,最后对其所能达到的性能指标进行估算.结果表明,该方案能够满足系统设计的要求,其创新点在于把DDS和PLL的优点有机地结合起来实现了高速跳频,摒弃了用直接数字频率合成DDS输出频率不能太高或用锁相环PLL合成频率锁定时间较长的缺点.  相似文献   

12.
S波段DDS/PLL频率合成技术研究   总被引:8,自引:2,他引:6  
DDS是一种数字波形合成技术,具有频率转换速度快、频率分辨率高、相位噪声低等优良性能,因此利用DDS作为可变参考源是比较理想的。本文采用DDS作为参考源驱动PLL频率合成器,实现了一个用于S波段遥测接收机的DDS/PLL频率合成器,同时对DDS/PLL频率合成器的输出特性进行了理论分析,并给出了实验结果。  相似文献   

13.
随着数字技术的发展 ,近十几年来 ,直接数字频率合成 ( DDS)技术发展很快 ,已发展成为主要的频率合成技术之一。现代许多频率合成器在设计中采用了 DDS和 PLL的混合式频率合成技术 ,可以将 DDS的高分辨率及快速转换时间特性与 PLL的输出功率高、寄生噪声和杂散低的特点有机地结合起来。文中研究了应用于正交频分复用 ( OFDM)通信系统的 DDS+ PPL混合式频率合成器设计 ,给出了系统方案、电路实现及测试结果 ,输出信号功率为 -5 d Bm,带内相位噪声可以达到 -76d Bc/Hz@1 k Hz,频率分辨率为 1 Hz,跳频速度可以达到 1 0 4 跳 /秒的数量级 ,实验表明其性能指标满足 OFDM通信系统的要求。  相似文献   

14.
提出了一种具体的C波段小步进频率合成器的设计方案。该方案是基于锁相环频率合成(PLL)和直接数字频率合成(DDS)相结合的结构,利用DDS激励PLL产生所需信号。设计的信号频率范围为5.02~5.38 GHz,频率步进为1 kHz。重点阐述了系统的硬件实现,包括系统设计方案、主要电路模块设计以及系统测试结果等,并针对实际调试过程中常见的问题给出一些改进的方法。最后的测试结果表明了该频率合成器具有频谱纯、相噪低、杂散抑制能力强等特点,可以满足实际系统需要。  相似文献   

15.
首先提出两种DDS和PLL相结合的频率合成方案,然后介绍DDS芯片AD9850的基本工作原理、性能特点及引脚功能,给出以它作为参考信号源的双环频率合成器实例,并对该频率合成器的硬件电路和软件编程进行了简要说明。  相似文献   

16.
简述了混合式频率合成技术的几种合成方式,比较了它们的优缺点,然后采用DDS激励PLL的混合方式实现了S波段频率合成器,并分别从杂散和噪声的来源以及如何去改善杂散和噪声性能去分析该混合式频率合成器,最终给出实际测试结果。  相似文献   

17.
蔡云飞 《移动通信》2012,36(12):79-82
文章主要介绍了一种微波宽带数字频率合成器设计,该频率合成器采用FPGA控制的直接数字频率合成器(DDS)驱动锁相环(PLL)技术来实现低噪声、低杂散、高分辨率、快捷变频的性能,在宽频段接收机中有着广泛的应用。  相似文献   

18.
本文介绍了一种C波段宽带捷变频率综合器的设计方法,采用直接数字频率合成器(DDS)实现频率捷变,采用倍频链路扩展输出带宽,通过与锁相环(PLL)合成产生的本振信号混频将输出频率搬移到C波段。论述了DDS时钟电路、倍频链路以及混频部分的设计方法,并给出了达到的主要技术指标和测试结果。  相似文献   

19.
基于DDS激励PLL宽带低杂散频率合成器   总被引:1,自引:0,他引:1       下载免费PDF全文
在微波频段,为了实现小步进、低相噪的宽带频率合成器,常采用直接数字合成(DDS)激励锁相环(PLL)的方式,但要同时实现低杂散(特别是近端杂散)则相对困难。本文基于 DDS 低杂散技术进行了研究,并介绍一种改进的基于 DDS激励 PLL技术实现的宽带频率合成器,可有效改善杂散抑制指标。设计所得到频率合成器频率范围为4 GHz~8 GHz,步进为100 kHz,杂散抑制指标可以满足全频段≤-70 dBc。  相似文献   

20.
一种L波段的小步进频率合成器   总被引:1,自引:1,他引:1  
胡丽格  杨志国  闵洁 《无线电工程》2007,37(6):60-61,64
详细分析了直接数字合成(DDS)和锁相环(PLL)的基本原理、特点及相位噪声特性。将DDS与PLL技术结合,取长补短,可以在不降低杂散性能要求的前提下实现小步进的频率合成器。在此基础上提出了一种DDS+PLL+混频的L波段小步进频率合成器的实现方案。根据方案,选择DDS芯片AD9850和PLL芯片ADF4112来搭建电路。给出了试验测试结果。测试结果表明,在L波段实现了相位噪声-94dBc/Hz@1kHz,杂散抑制-60dBc,频率步进1kHz,验证了该方案的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号