首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 573 毫秒
1.
浅埋隧道掘进爆破的地表震动效应试验研究   总被引:15,自引:6,他引:15  
以渝怀铁路人和场浅埋隧道工程为背景,进行掘进爆破的地表震动效应试验。通过测量掘进爆破引起的不同位置处的地表振动速度波形,研究地表震动特性及其变化规律。试验与分析结果表明:(1)掏槽孔爆破产生的地震效应最强烈,其震动强度是其他各类炮孔爆破的2倍以上:(2)辅助孔、崩落孔和周边孔爆破引起的地表振动速度并不总是随着其单段装药量的增加而增大;(3)浅埋隧道开挖区将造成掘进爆破产生的地表震动出现“空洞效应”:(4)掘进前方的爆破地震效应可用萨道夫斯基公式进行预测,掘进后方的爆破地震波则不符合这一衰减规律。人和场隧道掘进前方的地震波衰减参数为K=232.8,α=1.90。  相似文献   

2.
浅埋隧道爆破开挖及其振动效应研究   总被引:3,自引:0,他引:3  
 以密兴路火郎峪隧道工程出口段开挖为研究背景,进行隧道爆破开挖和地表振动监测试验研究。分析结果表明:(1) 沿隧道开挖方向,自成形隧道区向未开挖区,地表爆破振动速度逐渐降低;浅埋隧道爆破开挖振动波传播规律与其断面尺寸、隧道埋深、开挖方法以及围岩地质条件等有关。(2) 掏槽孔爆破振动控制是降低浅埋隧道振害的关键,使用多级小楔形掏槽能有效改善爆破振动效应与破岩效果。(3) 全面监控浅埋隧道掘进爆破振动效应,优化爆破参数,能有效控制爆破减振害,提高施工效率。  相似文献   

3.
浅埋偏压隧道开挖爆破振动与控制技术   总被引:1,自引:0,他引:1  
以密兴路改建工程火郎峪隧道工程为背景,进行掘进爆破地表振动监测与控制技术研究。监测与分析结果表明:①沿隧道横断面,偏压浅埋处地表振速最大;沿隧道开挖方向,自成洞区向未开挖区地表振速呈现递减趋势;②将大楔形掏槽改为多级小楔形掏槽,爆破振动效应与破岩效果得到有效改善;③合理布置掏槽位置,可以有效减少掏槽孔爆破对隧道偏压浅埋处的振动影响;④全面监控浅埋偏压隧道掘进爆破振动及其效应,优化爆破参数,既能有效控制爆破振害,又能保证较大循环进尺。  相似文献   

4.
以正在建设中的青岛地铁一期工程M3号线为背景,采用现场测试和数值模拟分析相结合的方法系统研究了地铁隧道爆破地表振动效应随埋深的变化规律。结果表明:花岗岩地层地铁隧道爆破施工存在满足安全经济综合最优要求的合理埋深范围;爆源正上方地表质点峰值振速在隧道埋深12 m以前随隧道埋深增加急剧衰减,埋深达18 m以后随埋深增加振速变化不显著;爆破振动空洞效应随隧道埋深增加空洞效应逐渐降低;爆破振动效应随爆破掏槽药量增大而增大,增加相同药量,埋深越大,增幅越小;随隧道断面尺寸增加而减小,增加相同断面,埋深越大,减幅越小。  相似文献   

5.
为分析浅埋小净距隧道爆破引起地表及临近先行隧道振动的影响,开展爆破振动现场监测实验,得到了各典型爆破段引起地表及已开挖隧道迎爆侧的振动传播规律。结果表明:地表及邻近隧道对应爆破掌子面前后25m范围内,前方质点速度大于后方,但后方各点的振速衰减比前方快;地表各测点振动速度垂直方向分量最大,切线方向与径向方向相近,已开挖隧道迎爆侧边墙各测点径向方向分量最大,为垂向和轴向的1.5~4.0倍;掏槽和扩槽爆破时受岩石夹制作用大,引起地表和已开挖隧道振动速度相对较大,辅助和周边装药段爆破振动较小;并依据国家《爆破安全规程》,对隧道易破坏位置进行了分析。研究成果可为同类隧道爆破开挖与振动控制提供参考。  相似文献   

6.
地铁隧道多处于城市中心,地表建筑物众多,环境复杂,为确保隧道爆破施工安全,减少民扰及确定最大单响药量,在现场试验的基础上,根据萨道夫斯基经验公式,计算出爆破地震波衰减系数α和k值,得出了适合该爆区爆破地震波传播衰减经验公式,并根据该公式计算保护对象不同安全振速要求的单段最大起爆药量,通过对地表质点的振动特性以及衰减规律进行分析,确定爆破规模,将隧道周边建筑物的振动速度控制在安全范围内,从工程实施的效果来看,研究成果与结论取得了较好的应用,保障了工程爆破顺利完成的同时,对周围建筑物不造成损坏.  相似文献   

7.
城市隧道开挖爆破对地表建筑物影响的安全评价   总被引:1,自引:0,他引:1  
以青岛胶州湾海底隧道青岛端接线工程开挖为研究对象,应用事故树分析法对可能引起地表建筑物受损的各种爆破振动因素进行定性分析,求出各影响因素的重要度,为后续监测和施工方案的调整提供理论依据.通过现场对爆破振动监测,确立振动传播衰减规律,并以此对地面建筑物进行安全性评价.研究成果对指导青岛后续地铁隧道工程开挖和保证地表建筑物安全有重要参考价值.  相似文献   

8.
通过现场爆破振动测试和数值模拟方法研究地下厂房爆破损伤范围及判据;在应用FLAC3D数值模拟软件中,损伤变量D被引入弹塑性本构模型,同时将简化的三角形荷载作为爆破冲击荷载施加在炮孔孔壁上,并根据岩石中有效应力确定爆破损伤范围。调整同时起爆炮孔数目,改变单段起爆药量,研究爆破损伤范围与单段药量的关系,结果表明:损伤深度和损伤水平半径均随单段药量的增加而增大,损伤范围随着炮孔深度增加而减小,爆破损伤最大水平半径出现在炮孔顶部面上。根据爆破近区质点速度衰减规律,并通过数据拟合得到对应于不同单段起爆药量的最大损伤水平半径和相应部位爆破质点临界损伤振动速度的关系,临界损伤振动速度可作为爆破损伤安全判据。研究成果有效地应用到实践中,对类似开挖爆破工程具有一定指导意义。  相似文献   

9.
浅埋隧道掘进爆破振动特征研究   总被引:5,自引:1,他引:4  
浅埋隧道掘进爆破振动特征有别于其他类型的爆破,作者根据浅埋隧道掘进爆破振动监测数据,拟合得到了泰山花岗岩中地面振动速度的变化规律。应用小波分析方法分析了浅埋隧道掘进爆破的振动频谱及能量分布特征。其研究对丰富地震波传播理论、指导隧道工程开挖爆破施工和保证地面建筑物安全起到了重要作用。  相似文献   

10.
介绍在建地铁宁高城轨隧道下穿既有宁芜货线隧道的爆破开挖振动控制,其左线最小净距仅约1.7 m,右线最小净距4.0 m,隧道下穿高铁北联络道匝道桥,爆破环境复杂。为使保护目标不受破坏,采用了优化炮孔延期时间的控制、及时调整段药量及减震空孔参数等减震措施,使宁芜货线隧道以及地表的联络匝道桥等建筑位置处的地震波控制在安全范围内,获得了很好的工程效果。  相似文献   

11.
在城市建筑物密集的地下进行大跨度隧道的开挖,需控制和评价爆破振动对地表建筑物的影响.本文对重庆市黄泥塝浅埋轻轨车站进行了地表建筑振动的监测.应用经验公式对现场监测数据进行了回归分析,从而确定爆破应力波在地层中的衰减参数,进而控制不同距离下的单段最大装药量,以保证地表建筑物结构的稳定安全,其研究对于指导后续工程的施工起到...  相似文献   

12.
浅埋隧道下穿密集房屋爆破减震技术研究   总被引:5,自引:0,他引:5  
如何正确处理复杂环境下浅埋隧道爆破振害和工程效率之间的矛盾一直是个技术难题。本文依托浅埋下穿重庆市丰都县江池镇标段的长洪岭隧道工程,利用现场监测的方法对不同爆破方案的施工爆破振动进行对比研究,研究表明:采用超前下导坑非爆破开挖+预留光爆层控制爆破开挖技术和上台阶非爆破开挖+下台阶控制爆破技术,成功地将地表爆破振速控制在1.5cm/s以内,在保护建筑物安全的同时,有效保证了该工程的安全快速施工,并为城市环境下隧道爆破掘进工程提供借鉴。  相似文献   

13.
唐波涛 《山西建筑》2012,38(11):195-196
在中家湾隧道爆破施工过程中进行了爆破振动监测,应用基于Matlab的最小二乘法的回归分析得出了K,α值。根据K,α值获得的爆破振动规律估算出爆破振动达到安全振速时的单段最大允许装药量,以确保高压电塔的安全。  相似文献   

14.
暗挖地铁隧道减震爆破技术   总被引:1,自引:0,他引:1  
暗挖矿山法地铁隧道施工,周边建筑多,要求爆破作业极大限度地减少对周边环境的干扰。本文结合工程实例介绍减震爆破的控制过程和爆破方法。  相似文献   

15.
孙丙福  邓继杰 《江苏建筑》2007,(B12):29-30,54
城市暗挖矿山法地铁隧道施工,周边建筑物较多,要求爆破作业极大限度地减少对周边环境的干扰。文章结合工程实例介绍减震爆破的控制过程和爆破方法。  相似文献   

16.
爆炸冲击波在地铁隧道内的传播规律研究   总被引:2,自引:0,他引:2  
地铁是重要的生命线工程,具有造价高、使用周期长、运行期间内部人员密集等特点,极易成为恐怖爆炸袭击的目标。炸药在地铁隧道内爆炸产生的冲击波由于受到地铁内衬砌的限制,会发生反射和叠加,其超压峰值远远大于自由场中的峰值,冲击波的传播过程也会更加复杂。为了探明爆炸冲击波在地铁隧道内的传播规律,以南京地铁隧道为例,利用LS-DYNA动力分析软件,采用流固耦合算法,对10 kg TNT炸药在地铁内的爆炸过程进行数值模拟,分析爆炸冲击波的传播过程,得出沿地铁隧道纵向超压的衰减规律,研究成果可为地铁隧道防恐怖爆炸袭击应急预案的制定和政府决策提供依据。  相似文献   

17.
江胜华  李祥久 《山西建筑》2014,(31):198-199
对某现场爆破振动地表振动速度峰值监测结果进行了研究,拟合得到了地下工程岩石开挖爆破地面振动速度的变化规律,并对同断面、同药量、同测点掏槽爆破地表质点振速和非掏槽地表质点爆破振速进行比较,结果表明掏槽爆破产生振速较大,合理设计掏槽为关键点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号