首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
作为全光通信网的核心设备的光分插复用器(OADM),对全光网的传输能力、组网方式、关键性能都具有重要影响。本文首先在引言部分介绍光分插复用器产生的背景及分插复用器的发展阶段,之后详细阐述了光分插复用器的基本原理、基本要求。在此基础上,本文探讨了光分插复用器的分类及结构。在此部分,分析了以下几种光分插复用器:阵列波导光栅型OADM、采用声光可调谐滤波器的OADM、波导-光栅型OADM、光纤-光栅型OADM。接着,本文分析了OADM在WDM全光网络及OCDMA全光网络中的应用。最后,文章阐述了OADM技术与产品现状及发展趋势。  相似文献   

2.
本文介绍了3种在全光时分复用系统中所采用的解复用器:一是基于Sagnac干涉仪的光纤非线性光环路镜解复用器,二是采用行波半导体激光放大器的非线性光环路镜解复用器,三是基于转换的四波混频解复用器。解复用器是全光信息处理中的关键技术之一。  相似文献   

3.
全光网络及其上传送IP的研究   总被引:2,自引:0,他引:2  
讨论了网络的 IP化及 IP网络全光化趋势 ;讨论了全光网络的四种关键技术 ,包括光分插复用器 (OADM)、光交叉连接设备 (OXC)、高速路由器和全光路由 ;阐述了全光网络的三种网络结构以及在全光网络中传送 IP分组的三种方法。  相似文献   

4.
本文介绍了3种在全光时分复用(OTDM)系统中所采用的解复用器:一是基于 Sagnac干涉仪的光纤非线性光环路镜(NOLM)解复用器,二是采用行波半导体激光放大器的非线性光环路镜(TWSLA—NOLM)解复用器,三是基于频率转换的四波混频(FWM)解复用器。解复用嚣是全光信息处理中的关键技术之一。  相似文献   

5.
全光网的关键器件——光交叉连接器与光分插复用器   总被引:5,自引:0,他引:5  
邹志威  陈博 《光电子技术》2002,22(3):131-137,148
全光网(AON,all-optical network)以波长路由光交换技术和波分复用传输技术(WDM)为基础,它的网络节点由光分插复用器和光交叉连接器构成,能在光域上实现高速信息流的传输、交换、路由和故障恢复等功能。光交叉连接器(OXC)与光分插复用器(OADM)是全光网中最重要的网络器件,是真正实现全光网关键性功能的必要前提,也是目前国内外光通信器件厂商研究和开发的热点。本文结合全光网的发展,介绍了光交叉连接器(OXC)与光分插复用器(OADM)的基本原理、性能指标,对不同的节点结构进行了比较与讨论,并介绍与比较了目前国内外厂商的主要产品。  相似文献   

6.
当代光纤通信技术的发展方向是超大容量、全光网络、智能化、低成本和集成化,这些巨大发展得益于材料和器件的发展,本从全光网络中的光交换节点谈起,介绍了全光网特别是城域网光交换节点中最常用的一种器件-光分插复用器(OADM)的概念、工作原理、实现方法。并探讨了OADM应用于智能网络中的实际价值和发展前景。  相似文献   

7.
全光时分复用/去复用(MUX/DEMUX)技术是实现超高速光时分复用(OT-DM)传输不可缺少的关键技术。本文介绍了全光MUX/DEMUX电路的种类、特性及应用。全光MUX电路主要有平面光波电路(PLC)、利用4波混频构成的全光MUX电路和非线性方向耦合器开关。全光EDMUX电路主要有光克尔开关、非线性光学环路培(NOLM)开关、4波混频开关和交叉相位调制(XPM)开关等。全光MUX/DEMUX已  相似文献   

8.
全球主要的电信公司英国电信、MCITelestra、Hermes-Railtel、NTT和Worldcom的代表们组成一个座谈小组,对全光网络进行了定义,并交流了对全光网络前景的看法。会上,MCI的JohnFee提出了可能实现全光网络的几个关键技术,包括:下一代光纤(具有大的有效面积以减少非线性效应)、固定式激光接收机、可调谐激光器(应减少WDM系统中昂贵的DFBs的数量)、光分/插复用器、环行器、光栅技术、端到端管理系统、宽带放大器(扩大到80urn)、全光中继器和光交叉连接开关。MCI提出实现全光网络的几个关键技术…  相似文献   

9.
提出了用ADM(分插复用器)实现ATM(异步转移模式)和SDH(同步数字系列)互通的初步设想,并对ADM工作原理及功能模块作了详细分析,最后讨论了实现方法、性能及应用前景。  相似文献   

10.
研究了三种干涉仪全光开关。在相同条件下,测量了这三种开关装置不同宽度的开关窗口:引入综合对比率(ICR)估算开关窗口的开关性能.利用ICR.比较这些开关,并讨论它们以40、80和160Gb/s数据速率在光时分复用(OTDM)系统十作为解复用器的应用。  相似文献   

11.
GeO2-doped silica waveguides with a high refractive index difference of 1.5% are successfully fabricated on Si substrates. Their propagation loss, measured in 200-cm-long test circuits with a minimum curvature radius of 2 mm, is 0.073 dB/cm. The waveguides are used as high-density integrated planar lightwave circuits in 1×4 Mach-Zehnder (MZ) type multi/demultiplexers for optical frequency division multiplexing (FDM) transmission systems and in modified MZ type multi/demultiplexers with a ring resonator, which have a compact device size of 15×50 mm2 and a frequency spacing of 10 GHz  相似文献   

12.
张权  李玲 《光通信研究》1997,(2):17-20,26
Fabry-Perot光滤汉器是波分复用(WDM)系统中实现信道解复用的关键器件,本文根据F-P腔光滤波器特性,给出了WDM系统串话模型,并分析了信道误码率和信道串话造成的的功率代价。  相似文献   

13.
光纤无源器件的技术概况和发展趋势   总被引:5,自引:0,他引:5  
光纤无源器件是光纤通信中的重要器件,也是新型的电子元件。它包括光纤(缆)连接器、光纤耦合器、波分复用器、光开关、光衰减器等。本文介绍了这些器件的技术概况和发展趋势。  相似文献   

14.
A number of optical signal processing functions that might be potentially important for future lightwave communication networks are described. An optical network with a distribution capacity of 100 HDTV channels is considered along with how such a network can be implemented using the following functional subsystems: frequency converters; transmitter banks; modified (wavelength division multiplexing) WDM demultiplexers; and tunable optical receivers. Discussed are the key network-level issues: the power budget, the channel separation, and the overall rationale for selection of multiplexing techniques. A hardware implementation of the functional subsystems using three basic building blocks-tunable amplifiers/filters, phase locked loops, and comb generators-is discussed  相似文献   

15.
There is an increasing desire to employ wavelength division multiplexing (WDM) techniques in optical communication systems to increase the useable capacity of optical fibre links. WDM transmitters usually consist of several narrow linewidth lasers, with their operating wavelengths suitably spaced. WDM demultiplexers or receivers employ either discrete gratings or discrete transmission filters to separate the various wavelengths. The disadvantage of such demultiplexers is that precise mechanical alignment of the many components is required. Together with the high cost of components such as gratings this makes such demultiplexers unsuitable for mass production. The authors describe a method of producing a dielectric wavelength filter integrated onto an InGaAs PIN photodiode for use in WDM systems and give results for the transmission characteristics of the filters and quantum efficiency of the whole structure.<>  相似文献   

16.
袁配  王玥  吴远大  安俊明  祝连庆 《红外与激光工程》2019,48(8):818004-0818004(7)
波分复用/解复用器与可调光衰减器的是光通信系统中的重要元器件。为了得到制备工艺简单、响应速度快的二者的单片集成芯片,并且考虑到其与其他不同光器件的集成可能性,在绝缘体上硅材料制作了16通道、信道间隔200 GHz的阵列波导光栅复用/解复用器与电吸收型可调光衰减器的单片集成。该器件的片上损耗小于7 dB,串扰小于-22 dB。电吸收型VOA在20 dB的衰减量下的功耗为572 mW (106 mA,5.4 V)。此外,该器件可以实现光功率的快速衰减,在0~5 V的外加方波电压下,VOA上升及下降时间分别为50.5 ns和48 ns。  相似文献   

17.
In this paper we investigate the impact of finite laser linewidths (i.e. source partial coherence) on the crosstalk performance of optical frequency division multiplexing (OFDM) networks employing single-cavity Fabry-Perot demultiplexers. Results are presented that show the important limitation imposed by the finite laser linewidths on the attainable bit error rate (BER), maximum number of users, and the required power penalties to overcome this impairment  相似文献   

18.
Lightwave applications of fiber Bragg gratings   总被引:17,自引:0,他引:17  
Fiber Bragg gratings (FBGs) have emerged as important components in a variety of lightwave applications. Their unique filtering properties and versatility as in-fiber devices is illustrated by their use in wavelength-stabilized lasers, fiber lasers, remotely pump amplifiers. Raman amplifiers, phase conjugators, wavelength converters, passive optical networks, wavelength division multiplexers (WDMs) demultiplexers, add/drop multiplexers, dispersion compensators, and gain equalizers  相似文献   

19.
Architectures and technologies for high-speed optical data networks   总被引:2,自引:0,他引:2  
Current optical networks are migrating to wavelength division multiplexing (WDM)-based fiber transport between traditional electronic multiplexers/demultiplexers, routers, and switches. Passive optical add-drop WDM networks have emerged but an optical data network that makes full use of the technologies of dynamic optical routing and switching exists only in experimental test-beds. This paper discusses architecture and technology issues for the design of high performance optical data networks with two classes of technologies, WDM and time division multiplexing (TDM). The WDM network architecture presented stresses WDM aware Internet protocol (IP), taking full advantage of optical reconfiguration, optical protection and restoration, traffic grooming to minimize electronics costs, and optical flow-switching for large transactions. Special attention is paid to the access network where innovative approaches to architecture may have a significant cost benefit. In the more distant future, ultrahigh-speed optical TDM networks, operating at single stream data rates of 100 Gb/s, may offer unique advantages over WDM networks. These advantages may include the ability to provide integrated services to high-end users, multiple quality-of-service (QoS) levels, and truly flexible bandwidth-on-demand. The paper gives an overview of an ultrahigh-speed TDM network architecture and describes recent key technology developments such as high-speed sources, switches, buffers, and rate converters  相似文献   

20.
1550-nm volume holography for optical communication devices   总被引:2,自引:0,他引:2  
The two-lambda method can provide a strategic approach to implement all-optical devices for communication wavelength division multiplexing (WDM) signal processing based on volume holography. By writing holograms at 488 nm in LiNbO/sub 3/:Fe and reading them in the third window of optical communication systems (1550 nm), the feasibility of WDM demultiplexers and holographic memories for digital bytes is here demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号