首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以化学共沉淀法制备出的球形Ni0.5Co0.3Mn0.2CO3前驱体,合成了振实密度高达2.60 g/cm3的球形正极材料LiNi0.5Co0.3Mn0.2O2.研究表明,LiNi0.5Co0.3Mn0.2O2为10 μm左右的球形粉体,为纯相的α-NaFeO2层状结构.在2.7~4.3V,0.2 C倍率进行充放电,LiNi0.5Co0.3Mn0.2O2的首次放电比容量170.2 mAh/g,50次循环后容量保持率为94.3%;在2.7~4.6 V,在0.2 C倍率下放电,首次放电比容量为191.8 mAh/g,循环50次后容量保持率为90.5%.LiNi0.5Co0.3Mn0.2O2的首次循环伏安测试结果和交流阻抗测试结果进一步表明材料具有良好的电化学性能.  相似文献   

2.
正极材料LiNi_(0.5)Mn_(1.5)O_4的制备和性能   总被引:1,自引:1,他引:0  
以Mn(CH3COO)2、Ni(CH3COO)2和CH3COOLi为原料,用流变相法制备了正极材料LiNi0.5Mn1.504.XRD测试表明:所得LiNi0.5Mn1.504具有尖晶石结构.电化学性能测试表明:在750 ℃下焙烧6 h制备的LiNi0.5Mn1.5O4的电化学性能最佳.在3.5~4.9 V以0.2 C充放电,首次放比电容量为137.70 mAh/g,第30次循环的放电比容量为135.75 mAh/g.  相似文献   

3.
以Mn3O4为原料,在氧气气氛中用固相反应法制备尖晶石结构正极材料LiNi0.5Mn1.5O4,并用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试考察了反应温度、反应时间和锂用量等工艺条件对合成产物的结构、微观形貌和电化学性能的影响。结果表明通过控制工艺条件可以优化材料的电化学性能,其中锂用量为1.02,在900℃反应2h所合成LiNi0.5Mn1.5O4具有Fd3m尖晶石结构,放电比容量为140mAh/g、40次循环后容量保持率为94.8%。  相似文献   

4.
采用共沉淀-喷雾造粒法制备前驱体,于700℃在空气中煅烧20h合成出层状LiNi0.5-xCo2xMn0.5-xO2正极材料,研究了不同掺钴量对材料的结构和电化学性能的影响,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及电性能测试考察了所得材料的结构、形貌与电化学性能。XRD分析表明,LiNi0.5-xCo2xMn0.5-xO2具有α-NaFeO2层状结构,Co3+的掺入可促进层状结构的生成,有效减少阳离子混排。电性能测试结果显示,LiNi0.5-xCo2xMn0.5-xO2随着掺钴量的增大,放电容量提高,循环性能变好。样品LiNi0.35Co0.3Mn0.35O2表现出最好的电化学性能,其首次放电效率充放电效率达90%,首次放电比容量为172.8mAh/g,40次循环容量无明显衰减。  相似文献   

5.
以LiOH H2O、Ni(CH3COO)2 4H2O和Mn(CH3COO)2 4H2O为原料,H2C2O4 H2O为沉淀剂,NH3 H2O为络合剂,通过草酸共沉淀法合成了正极材料LiNi0.5Mn1.5O4。分析了煅烧温度、煅烧时间及锂过量对产物性能的影响。在850℃下煅烧16h,锂过量10%合成的产物,具有立方尖晶石结构、规则的八面体晶形,0.1C首次放电比容量为133.0mAh/g,第30次循环时仍有129.0mAh/g,放电平台为4.7V,4V放电平台几乎消失。  相似文献   

6.
唐发满 《电池》2021,51(1):71-75
结合共沉淀法、溶剂热法和固相法,将Li2TiO3包覆在LiNi0.5Mn0.5O2正极材料表面,合成zLi2TiO3@LiNi0.5Mn0.5O2(z=0、0.03、0.05和0.08)正极材料.通过XRD、SEM和透射电子显微镜(TEM)对合成材料的结构、形貌和元素分布等进行分析.Li2TiO3均匀地包覆在LiNi0.5Mn0.5O2的表面,减缓LiNi0.5Mn0.5O2材料的团聚程度;包覆过程中,少量的Ti4+掺杂进入材料的内部,可降低锂镍混排程度.以40 mA/g(0.2 C)在2.5~4.5 V充放电,0.03Li2TiO3@LiNi0.5Mn0.5O2的电化学性能较好.与LiNi0.5Mn0.5O2正极材料相比,包覆Li2TiO3不仅将电极的放电比容量由125.44 mAh/g提高到138.40 mAh/g,而且将容量保持率由76.66%提升到89.23%(循环120次时).这是因为具有三维结构的Li2TiO3包覆层和Ti4+掺杂可降低锂镍混排,减轻极化,降低迁移电阻,增加材料的结构稳定性,提高Li+的迁移速率.  相似文献   

7.
以Ni0.5Co0.2Mn0.3(OH)2和Li2CO3为原料,TiO2和ZnO为掺杂剂,制备出不同含量钛锌离子复合掺杂的锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2。用XRD、SEM、恒电流充放电、交流阻抗法和循环伏安方法分别研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2的结构、形貌和其电化学性能的影响。结果表明3%(摩尔分数)的Ti、Zn离子复合掺杂能有效提高LiNi0.5Co0.2Mn0.3O2的倍率放电能力和循环性能。在1C和2C的充放电倍率下,首次放电容量分别为170.4mAh/g和164.8mAh/g,经过50次充放电循环后容量保持率分别为96.3%和94.7%,具有优良的电化学性能。  相似文献   

8.
通过溶胶-凝胶法合成正极材料LiNi0.5Mn0.5O2,为了提高材料LiNi0.5Mn0.5O2的高倍率放电性能,采用Mg进行掺杂。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电对材料的结构和形貌及电化学性能进行了研究。结果表明少量Mg的掺杂未影响到LiNi0.5Mn0.5O2的晶体结构,但改善了其电化学性能,其中,当Mg的掺杂量为5%(摩尔分数)时,材料具有更好的电化学性能,4 C放电时,首次放电比容量达到118 m Ah/g,且循环性能良好。  相似文献   

9.
通过共沉淀法制备了富锂层状正极材料Li2Mn O3·2 Li Ni0.5Mn0.5O2,采用扫描电子显微镜(SEM)、X射线衍射分析(XRD)、循环伏安和恒流充放电测试对其结构和电化学性能进行了表征。研究结果表明富锂正极材料Li2Mn03·2 Li Ni0.5Mn0.5O2具有相对高的比容量及良好的循环性能,首次放电比容量为187.2 m Ah/g,首次充放电库仑效率为74.3%,第二次充放电库仑效率升至97.6%。经过30次循环,放电比容量仍有156.8 m Ah/g,容量保持率为83.7%。  相似文献   

10.
采用碳酸盐液相共沉淀法制备了球形LiNi0.5Mn1.5O4正极材料。研究了Ni0.25Mn0.75CO3前驱体高温分解的分解过程、物相转变、表面形貌变化以及LiNi0.5Mn1.5O4材料的物相结构、表面形貌、电化学性能。实验表明:Ni0.25Mn0.75CO3前驱体在750℃以上分解可以得到结构稳定的NiMn2O4和Mn2O3;以850℃分解得到的镍锰氧化物制备的LiNi0.5Mn1.5O4正极材料为单一尖晶石结构,球形形貌保持良好,振实密度可达2.26 g/cm3,初始放电比容量达到127.6 mAh/g,0.5 C/1 C充放电,室温循环50次后仍保持有97.6%的初始容量。  相似文献   

11.
锂离子电池正极材料LiNi0.5Co0.5O2的制备及性能   总被引:3,自引:1,他引:3  
蔡振平  刘人敏  吴国良  金维华 《电池》2002,32(Z1):58-60
LiNixCo1-xO2(0≤x≤1)系是一种很有希望的新型的锂离子电池电极材料.以Li2CO3,NiO,Co3O4为原料,经过造粒的预处理,固相反应合成了锂离子电池正极材料LiNi0.5Co0.5O2.研究了不同的合成条件对产物结构、性能的影响.结果表明,反应温度、时间、Li/(Ni+Co)摩尔比等因素对产物的结构、电性能有一定的影响.XRD分析表明合成的产物LiNi0.5Co0.5O2结晶良好,具有规整的a-NaFeO2层状结构的.充放电测试表明在优化条件下合成的LiNi0.5Co0.5O2首次充电容量为170.1mAh/g,放电容量为157.4mAh/g,20次循环后保持初始容量的92%,循环稳定性良好.以MCMB为阳极材料,合成产物为阴极材料,组装成18650型锂离子电池,性能与LiCoO2相当.  相似文献   

12.
采用溶胶-凝胶-自蔓延燃烧法合成了LiNi0.5Mn1.5O4和LiCr0.1Ni0.45Mn1.45O4两种高电压正极材料。通过X射线衍射(XRD)表明铬离子掺杂未改变LiNi0.5Mn1.5O4的晶型结构,但改善了其晶型生长。扫描电镜(SEM)表明两种样品呈规则正八面体外形,颗粒较均匀,LiNi0.5Mn1.5O4平均粒径大约为400 nm,LiCr0.1Ni0.45Mn1.45O4平均粒径大约为200 nm。电化学性能测试结果表明,在1 C放电倍率下,两种电池的首次放电比容量分别为111.0 mAh/g和121.5 mAh/g,以容量保持率为首次放电比容量85%为截止条件,分别可以实现32个和51个稳定循环。在此条件下,LiCr0.1Ni0.45Mn1.45O4/Li电池的平均中值电压为4.55 V,略高于LiNi0.5Mn1.5O4/Li电池4.51 V。倍率性能测试结果表明,LiCr0.1Ni0.45Mn1.45O4/Li电池及LiNi0.5Mn1.5O4/Li电池在0.5 C、1 C下放电比容量分别可保持0.2 C时的91.9%、87.1%和91.1%、83.6%。铬离子掺杂可明显改善LiNi0.5Mn1.5O4的综合性能。  相似文献   

13.
何玉林  姚年春  陈冬  蒋道霞 《电池》2021,51(3):280-283
采用共沉淀法制备前驱体Ni0.5Co0.2Mn0.3O2(OH)2,再经高温煅烧制备单晶正极材料LiNi0.5Co0.2Mn0.3O2,并进行B2 O3包覆(质量分数为0.5%、1.0%和1.5%).在3.0~4.3 V充放电,包覆量为1.0%的样品以0.5 C充电、1.0 C放电循环200次的容量保持率为84.58%,5.0 C放电比容量为107 mAh/g,未包覆的样品分别为74.29%、85 mAh/g.B2 O3包覆可提高单晶正极材料LiNi0.5 Co0.2 Mn0.3 O2表面的稳定性,B2 O3包覆层作为屏障材料,可阻止HF对基体材料的腐蚀.  相似文献   

14.
通过高温固相法合成了层状三元LiNi0.5Co0.2Mn0.3O2阴极材料,考察了烧结温度和锂过量的微小差别对电极性能的影响。扫描电子显微镜实验证实当烧结温度高于980℃时,合成的样品棱角分明,而在950℃以下合成的样品主要是球形。随着循环的进行,对于在900和930℃合成的样品,放电容量几乎成线性降低;当合成温度高于980℃时,随着循环的进行放电容量呈S型变化。900℃合成的样品初始比容量为170 mAh/g左右(循环窗口3.0~4.3 V),100次以后比容量为140 mAh/g。锂过量6%(摩尔分数)时综合性能较好。  相似文献   

15.
以CH3COOLi、Ni(CH3COO)2和Mn(CH3COO)2为原料,用流变相法合成了正极材料ZnO包覆的Li Ni0.5Mn1.5O4。XRD测试表明:该材料为尖晶石结构。电化学性能测试表明:包覆ZnO后,Li Ni0.5Mn1.5O4在3.5~4.9 V以0.1C充放电的首次放电比容量为137.68 mAh/g,第30次循环的放电比容量为133.78 mAh/g,循环稳定性得到了改善。  相似文献   

16.
钟卓洪  叶乃清  马真  吴保明 《电源技术》2013,37(8):1310-1313
对低温燃烧法合成的富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的充放电性能、充放电循环过程中Mn离子的价态变化、电化学阻抗变化以及正极材料的结构变化进行了系统的研究。研究结果表明,在开头的若干次充放电循环中,富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的放电比容量随循环次数的增加而增加,经过若干次循环后可以达到一个相当高的水平,其循环性能良好。以0.1 C在2.5~4.6 V之间充放电,放电比容量可达244 mAh/g,第50次循环,仍保有233 mAh/g。充放电过程中晶格中的Mn4+离子部分转变为Mn3+并参与电化学反应,这是造成放电比容量随循环次数增加而增加的原因,而显微结构和晶体结构保持稳定及电化学阻抗的降低是材料具有良好循环性能的原因。  相似文献   

17.
徐宁  刘国强  曾潮流  吴维 《电源技术》2003,27(Z1):213-216
采用Pechini预燃烧法制备锂离子蓄电池正极材料尖晶石型LiNi0.5Mn1.5O4,将生成的聚合物前驱体在开放的空气中点燃,燃烧后的粉料在550~850℃中焙烧8h得到最终产物。研究了焙烧温度以及冷却速度对合成产物组成结构以及电化学性能的影响。结果表明在600℃焙烧8h,冷却速度为0.5℃/min,所得试样的电化学性能最好:在4.7V时,首次充放电容量为103mAh/g和100mAh/g,15次循环放电容量保持95.2%;在3.0V时,首次充放电容量为145mAh/g和134mAh/g,15次循环放电容量保持91.5%;2.6~4.9V范围内总的充放电容量为250mAh/g和242.5mAh/g,15次循环放电容量保持88.4%。  相似文献   

18.
采用高温固相法合成了层状LiNi0.25Co0.5Mn0.25O2正极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)以及恒电流充放电测试,研究了LiNi0.25Co0.5Mn0.25O2材料的结构、形貌以及电化学性能。实验结果表明950℃7 h合成的样品具有最好的电化学性能,在0.1 C时2.5~4.3 V间,其首次充放电比容量分别为166.3 mAh/g和150 mAh/g,循环10周容量保持96%;XRD精修结果表明Li层中只有1.1%的位置被Ni所占据。  相似文献   

19.
蒲俊红  陈猛  徐宇虹 《电池》2007,37(2):112-114
采用液相共沉淀法合成了锂离子电池正极材料LiMn0.5-xCo0.5-xNi2xO2(2x=0、0.1、0.2、0.5和0.7)。用XRD、循环伏安、电化学阻抗谱(EIS)、恒流充放电测试研究了材料的晶体结构和电化学性能。结果显示:随着Ni含量的增加,材料的层状结构越来越明显,Li 的嵌入越来越容易,比容量呈线性增长。当放电倍率小于1C时,材料表现出良好的放电性能。在0.1C倍率下放电时,LiMn0.5-xCo0.25Ni0.5O2的首次放电比容量为125.8 mAh/g;50~100次循环内的比容量基本保持不变。  相似文献   

20.
采用碳酸盐共沉淀法合成了层状LiNi0.4 Co0.2MnMgxO2锂离子电池正极材料,对材料进行XRD研究表明,该材料具有a—NaFeO2(R-3m)结构。数据显示,通过Mg掺杂降低了Li层的阳离子混排程度。通过组装扣式电池对材料进行恒流充放电测试、交流阻抗测试、循环伏安测试等电化学性能测试。与LiNi0.4Co0.2Mn0.4O2相比,在Mn位进行Mg掺杂的LiNi0.4Co0.2 Mn0.4-x MgxO2循环性能和结构稳定性有了大幅度提高。所有掺杂的样品中,LiNi0.4Co0.2Mn0.038MgxO2具有最好的循环性能,首次放电比容量达到164.7mAh/g,在0.1C下循环10次后的容量达到160.3mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号