首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
正极材料LiNi_(0.5)Mn_(1.5)O_4的制备和性能   总被引:1,自引:1,他引:0  
以Mn(CH3COO)2、Ni(CH3COO)2和CH3COOLi为原料,用流变相法制备了正极材料LiNi0.5Mn1.504.XRD测试表明:所得LiNi0.5Mn1.504具有尖晶石结构.电化学性能测试表明:在750 ℃下焙烧6 h制备的LiNi0.5Mn1.5O4的电化学性能最佳.在3.5~4.9 V以0.2 C充放电,首次放比电容量为137.70 mAh/g,第30次循环的放电比容量为135.75 mAh/g.  相似文献   

2.
刘元刚  徐强  李红  张联齐 《电源技术》2015,(3):464-465,505
采用碳酸盐共沉淀法制备了LiNi0.5Mn0.5O2正极材料。研究了原料中不同锂含量对电极性能的影响。材料分析结果表明,碳酸盐共沉淀法合成的LiNi0.5Mn0.5O2材料中Ni和Mn分布均匀,离子混排小,结构有序。充放电测试结果表明,原料中过量锂的存在极大地改善了LiNi0.5Mn0.5O2材料的循环性能和倍率性能。在2.5~4.5 V的电压范围内,原料中锂未过量的LiNi0.5Mn0.5O2电极首次和80次循环后的放电比容量分别为190.3和153 m Ah/g。当原料中锂过量10%时,LiNi0.5Mn0.5O2电极首次和80次循环后的放电比容量分别为180.2和174.6mAh/g,两种电极的容量保持率分别为80.4%和96.9%。当以4C放电时,未过量和过量10%锂的LiNi0.5Mn0.5O2电极的放电比容量分别为91和100mAh/g。  相似文献   

3.
通过溶胶-凝胶法合成正极材料LiNi0.5Mn0.5O2,为了提高材料LiNi0.5Mn0.5O2的高倍率放电性能,采用Mg进行掺杂。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电对材料的结构和形貌及电化学性能进行了研究。结果表明少量Mg的掺杂未影响到LiNi0.5Mn0.5O2的晶体结构,但改善了其电化学性能,其中,当Mg的掺杂量为5%(摩尔分数)时,材料具有更好的电化学性能,4 C放电时,首次放电比容量达到118 m Ah/g,且循环性能良好。  相似文献   

4.
通过Sol-Gel法,采用马来酸作为络合剂合成了正极材料LiMgxNi0.5-xMn1.5O4(x=0、0.025、0.05和0.1),对产物进行了X射线衍射(XRD)、扫描电镜(SEM)表征和电化学性能测试,结果表明产物均为Fd3m型尖晶石结构,掺杂一定量Mg2+的LiNi0.5Mn1.5O4并未改变原有的结构;掺杂后的产物形貌和粒径发生了明显的变化;在1 C下循环50次后,掺杂Mg2+的样品的循环性能和容量保持率比未掺杂之前的好;Mg2+的掺入并未影响LiNi0.5Mn1.5O4的电化学反应过程。  相似文献   

5.
采用碳酸盐液相共沉淀法制备了球形LiNi0.5Mn1.5O4正极材料。研究了Ni0.25Mn0.75CO3前驱体高温分解的分解过程、物相转变、表面形貌变化以及LiNi0.5Mn1.5O4材料的物相结构、表面形貌、电化学性能。实验表明:Ni0.25Mn0.75CO3前驱体在750℃以上分解可以得到结构稳定的NiMn2O4和Mn2O3;以850℃分解得到的镍锰氧化物制备的LiNi0.5Mn1.5O4正极材料为单一尖晶石结构,球形形貌保持良好,振实密度可达2.26 g/cm3,初始放电比容量达到127.6 mAh/g,0.5 C/1 C充放电,室温循环50次后仍保持有97.6%的初始容量。  相似文献   

6.
采用喷雾干燥法制备Li Ni0.5Mn1.5O4正极材料,通过沉淀法在Li Ni0.5Mn1.5O4正极材料表面包覆Fe PO4以改善Li Ni0.5Mn1.5O4材料的高温循环性能。制备了质量分数1%Fe PO4、3%Fe PO4、5%Fe PO4三种不同包覆比例的Li Ni0.5Mn1.5O4/Fe PO4材料,电化学测试结果显示质量分数1%Fe PO4包覆效果最好。X射线衍射光谱法(XRD)数据表明,Fe PO4表面包覆处理并没有影响Li Ni0.5Mn1.5O4的晶型,材料仍为尖晶石结构。电化学性能测试表明,质量分数1%Fe PO4包覆材料的高温下循环稳定性得到显著的提升,其充放电100次后比容量为120 m Ah/g,为初始比容量的96.7%,远高于未包覆材料的89.99%的容量保持率。扫描电子显微镜法(SEM)观察显示,质量分数1%Fe PO4包覆的材料中Li Ni0.5Mn1.5O4颗粒被Fe PO4均匀包覆。ICP数据表明,Fe PO4的包覆减少了Li Ni0.5Mn1.5O4材料在高温循环时锰元素和镍元素的溶解,从而提高材料的循环稳定性。  相似文献   

7.
采用共沉淀-喷雾造粒法制备前驱体,于700℃在空气中煅烧20h合成出层状LiNi0.5-xCo2xMn0.5-xO2正极材料,研究了不同掺钴量对材料的结构和电化学性能的影响,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及电性能测试考察了所得材料的结构、形貌与电化学性能。XRD分析表明,LiNi0.5-xCo2xMn0.5-xO2具有α-NaFeO2层状结构,Co3+的掺入可促进层状结构的生成,有效减少阳离子混排。电性能测试结果显示,LiNi0.5-xCo2xMn0.5-xO2随着掺钴量的增大,放电容量提高,循环性能变好。样品LiNi0.35Co0.3Mn0.35O2表现出最好的电化学性能,其首次放电效率充放电效率达90%,首次放电比容量为172.8mAh/g,40次循环容量无明显衰减。  相似文献   

8.
利用溶胶凝胶法合成4.7 V高电压正极材料LiNi0.5Mn1.5O4,运用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构与形貌进行表征,并测试了其在1 mol/L LiPF6/(EC+DEC)、1 mol/L LiPF6/(EC+DEC+DMC)、1 mol/L LiPF6/(EC+EMC)三种电解液中的充放电性能。研究发现,不同成分的电解液显著影响LiNi0.5Mn1.5O4材料的电化学性能,其中在1 mol/L LiPF6/(EC+EMC)电解液中,材料具有相对好的循环性能,其最大放电比容量为92.4 mAh/g,50周循环后,比容量衰减为68.4 mAh/g,容量保持率为74%。循环伏安曲线(CV)结果表明,在4.7 V附近出现两对强氧化还原峰分别对应于Ni2+/Ni3+和Ni3+/Ni4+,在4.0 V出现的弱氧化还原峰则对应于Mn3+/Mn4+。相比于4.0 V低电压,在4.7 V高电压下LiNi0.5Mn1.5O4电极的SEI膜电阻增大而锂离子的脱嵌更容易进行。  相似文献   

9.
采用溶胶-凝胶-自蔓延燃烧法合成了LiNi0.5Mn1.5O4和LiCr0.1Ni0.45Mn1.45O4两种高电压正极材料。通过X射线衍射(XRD)表明铬离子掺杂未改变LiNi0.5Mn1.5O4的晶型结构,但改善了其晶型生长。扫描电镜(SEM)表明两种样品呈规则正八面体外形,颗粒较均匀,LiNi0.5Mn1.5O4平均粒径大约为400 nm,LiCr0.1Ni0.45Mn1.45O4平均粒径大约为200 nm。电化学性能测试结果表明,在1 C放电倍率下,两种电池的首次放电比容量分别为111.0 mAh/g和121.5 mAh/g,以容量保持率为首次放电比容量85%为截止条件,分别可以实现32个和51个稳定循环。在此条件下,LiCr0.1Ni0.45Mn1.45O4/Li电池的平均中值电压为4.55 V,略高于LiNi0.5Mn1.5O4/Li电池4.51 V。倍率性能测试结果表明,LiCr0.1Ni0.45Mn1.45O4/Li电池及LiNi0.5Mn1.5O4/Li电池在0.5 C、1 C下放电比容量分别可保持0.2 C时的91.9%、87.1%和91.1%、83.6%。铬离子掺杂可明显改善LiNi0.5Mn1.5O4的综合性能。  相似文献   

10.
分别采用溶胶凝胶法和高温固相法合成了Fe PO4包覆的Li Mn1.5Ni0.5O4正极材料和Li3.9Na0.1Ti5O12负极材料,并组装了Li Mn1.5Ni0.5O4/Li3.9Na0.1Ti5O12(LMNO/LNTO)全电池,采用充放电测试、循环伏安(CV)和电化学阻抗(EIS)研究了Fe PO4包覆对Li Mn1.5Ni0.5O4/Li4Ti5O12全电池电化学性能的影响。结果表明,Fe PO4的包覆抑制了Li Mn1.5Ni0.5O4高温合成时Mn3+的产生,有利于锂离子的可逆脱嵌。Fe PO4包覆的Li Mn1.5Ni0.5O4/Li3.9Na0.1Ti5O12(FP-LMNO/LNTO)比LMNO/LTO全电池具有更高的放电容量、循环性能、库仑效率和能量密度。FP-LMNO/LNTO全电池更适合作为动力锂离子电池。  相似文献   

11.
用溶胶-凝胶法结合高温后退火处理合成了掺杂Cr的LiNi0.5-0.5yCryMn1.5-0.5yO4(y=0.05,0.10,0.15,0.00),通过X射线衍射(XRD)、恒流充放电测试表征了材料的结构、电化学性能。结果表明,在电压范围为3.5~5.0 V内,LiNi0.45Cr0.1Mn1.45O4电化学性能最好,首次放电容量可达136.2mAh/g,0.1 C循环20次后,容量保持率99.7%;1 C倍率循环50次后,容量仍然有116.2 mAh/g,基本不衰减,大倍率循环有良好的容量和循环性能。  相似文献   

12.
LiNi0.5Mn1.5O4正极材料具有接近5V的电压平台,从而具有高的功率密度。综述了近年来LiNi0.5Mn1.5O4正极材料的合成及其掺杂改性的研究现状,重点对LiNi0.5Mn1.5O4正极材料的结构及其电化学性能进行了总结和探讨,并对LiNi0.5Mn1.5O4正极材料的发展前景进行了展望。  相似文献   

13.
采用Sol-Gel法和共沉淀法成功合成了尖晶石LiNi_(0.5)Mn_(1.5)O_4材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)以及电化学测试对不同合成方法对材料性能的影响进行表征。结果表明制备方法对材料的结构、形貌以及电化学性能具有较为重要的影响。  相似文献   

14.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

15.
采用溶胶-凝胶法制备了5 V正极材料LiNi0.5 Mn1.5 O4。将混合盐溶液以不同速度加入草酸溶液中,对制得的LiNi0.5 Mn1.5 O4材料的结构、形貌和电化学性能会产生显著的影响。结果表明:将盐溶液以0.17 mL/s的速度加入到草酸中,预烧温度为450℃,焙烧4 h,后900℃焙烧6 h制得的样品为粒径均匀的多面体,1 C 充放电初始容量达到135 mAh/g,55次循环后的放电比容量保持率为96.26%。  相似文献   

16.
尖晶石结构正极材料LiNi_(0.5)Mn_(1.5)O_4因具有理论比容量高、比能量大、放电平台高(~4.7 V)、价格低廉等优点而备受关注。但该材料循环性能和倍率性能不佳,制约着材料的推广应用。主要综述通过掺杂、包覆、形貌控制等手段来提高该材料电化学性能的最新研究进展,旨在为提升该材料性能的相关研究提供参考。  相似文献   

17.
对磷酸铁锂与镍钴锰酸锂复合正极材料的合成和电化学性能进行了研究。将磷酸铁锂与镍钴锰酸锂按照一定的质量比混合后得到复合正极材料。该复合材料结合了磷酸铁锂和镍钴锰酸锂的优点,表现出了优异的电化学性能。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和交流阻抗等表征方法对复合正极材料进行了表征和分析。结果表明,磷酸铁锂与镍钴锰酸锂的质量百分比为30∶70时,该复合正极材料具有更优异的电化学性能。  相似文献   

18.
张真  刘兴泉  张峥  向小春 《电池》2011,41(1):47-50
综述了近年来5 V锂离子电池正极材料LiNi0.5Mn1.5O4的合成方法(如固相反应法、共沉淀法、溶胶-凝胶法、喷雾法和熔盐法等)及修饰改性(如体相掺杂和表面包覆)的研究进展,并对发展前景进行了展望。LiNi0.5Mn1.5O4目前主要的问题是如何进行低成本和大规模的工业化生产。  相似文献   

19.
通过实验和参数辨识,确定了针对LiNi_(0.5)Mn_(1.5)O_4体系电池所需要的模型参数,建立了适用于该体系的变固相扩散系数模型。该模型能很好地对LiNi_(0.5)Mn_(1.5)O_4的放电过程进行模拟。通过对电池内部的过电位进行分析,对电池性能的限制因素进行了说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号