首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
锌铝尖晶石透明陶瓷是典型的结构功能一体化材料, 具有优异的光学、热学以及介电性能。本研究以ZnAl2O4和Al2O3为原料, 通过凝胶注模成型制备ZnAl2O4-Al2O3复相陶瓷初坯。实验探究了分散剂含量、pH以及固相量对ZnAl2O4-Al2O3混合料浆流变学特性的影响, 制得固相量为50vol%的低黏度稳定料浆。浇注成型后的坯体通过无压烧结和热等静压反应烧结制备透明陶瓷。最终获得的ZnO·2.56Al2O3透明陶瓷样品在厚度为1.8 mm下可见光波段透过率达到70%, 红外波段透过率达到80%以上, 维氏硬度为(11.34±0.17) GPa, 杨氏模量为285 GPa。  相似文献   

2.
镁铝尖晶石透明陶瓷是典型的结构功能一体化材料, 具有优异的光学和机械性能。实验合成了颗粒细小、均匀的单相MgO·1.5Al2O3陶瓷粉末, 并且利用XRD全谱拟合软件Fullprof和尖晶石位置分配程序SIDR两步法确定其晶体结构为(Mg0.46Al0.54)IV[Mg0.26Al1.640.09]VIO4。再通过真空无压烧结结合热等静压烧结制备出了高性能的透明陶瓷, 热等静压18 MPa下1850℃烧结4 h所得样品的致密度达到99.75%, 厚度为2 mm的烧结样品可见光透过率达到65%, 红外波段透过率达到80%以上, 维氏硬度为(12.75±0.12) GPa, 杨氏模量为277 GPa。  相似文献   

3.
反应烧结制备AlON透明陶瓷   总被引:2,自引:0,他引:2  
γ-AlON透明陶瓷具有优良的光学和力学性能, 可望代替蓝宝石单晶用做红外窗口和透明装甲. 采用反应烧结法制备AlON透明陶瓷, 探索了烧结助剂以及保温时间对AlON陶瓷致密化的影响. 通过X射线衍射和扫描电镜分析了陶瓷烧结体的物相及显微结构, 利用分光光度计测试了透明陶瓷的直线透过率. 结果表明: 和单掺的MgO或Y2O3相比, 以MgO和Y2O3共掺作为烧结助剂能够更好地促进AlON的致密化. 在保持Y2O3添加量为0.08wt%的情况下, 样品的透过率随着MgO添加量的增加而明显提高. 添加0.08 wt% Y2O3 +1wt% MgO作为烧结助剂的样品在1950℃保温12h后透过率(600nm处)达到约60%.  相似文献   

4.
以高纯商业Y2O3、α-Al2O3和Nd2O3粉体为原料, 以TEOS(正硅酸乙酯)和MgO为烧结助剂, 采用固相反应和真空烧结技术制备了1.0at%Nd:YAG透明陶瓷。系统研究了球磨转速(球磨时间10 h)对混合粉体的尺寸以及对陶瓷样品致密化行为、显微结构和光学性能的影响。结果表明: 通过球磨过程可以充分细化原料粉体的颗粒; 随着球磨转速的提高, 陶瓷烧结时样品中的气孔能更好地排除。但是球磨转速过高时, 陶瓷烧结体中存在少量的富铝第二相会降低样品的光学透过率。当球磨转速为130 r/min时, 真空烧结(1760℃×50 h)所得Nd:YAG透明陶瓷的微结构均匀致密, 几乎没有晶界和晶内气孔存在, 样品在1064 nm处的直线透过率高达83%。  相似文献   

5.
MgAl1.9Ga0.1O4透明陶瓷具有优异的光学性能,其制备依赖于高质量坯体的凝胶注模成型和长时间的无压预烧。本研究选择MgF2为烧结助剂,并通过瞬时液相调节无压预烧的致密化过程。采用干压成型、无压预烧和热等静压烧结制备了不同尺寸的MgAl1.9Ga0.1O4透明陶瓷样品,并系统分析了MgF2对材料显微结构、光学和机械性能的影响。研究表明:MgF2在~1230℃熔化形成的液相促使陶瓷的致密度与晶粒尺寸增大,后续烧结过程中残留的MgF2氧化为MgO并固溶进入MgAl1.9Ga0.1O4晶格。添加质量分数0.2%MgF2的2.04mm厚透明陶瓷样品在紫外和可见光区域具有76.5%~83.4%的直线透过率和较高的光学质量。此外,该陶瓷的特征抗弯强度为167.1MPa,与细晶MgAl2O4透明陶瓷相近,但是前者的Weibull模数(8.81±0.29)更高。本研究为制备光学性能良好的大尺寸MgAl...  相似文献   

6.
利用湿化学法制备了MgO/Eu2O3共掺Al2O3陶瓷, 研究了不同的MgO/Eu2O3掺杂量对Al2O3陶瓷物相组成、显微结构和微波介电性能的影响。结果表明: 适量的MgO/Eu2O3共掺有助于Al2O3的致密化和晶粒生长。在介电性能方面, MgO/Eu2O3共掺对Al2O3陶瓷的介电常数没有明显的影响, 但对介电损耗的影响显著。随着Eu2O3含量的增加, Al2O3陶瓷的Q×f值会呈现先增加后下降的变化趋势。0.05wt% MgO/0.10wt% Eu2O3共掺的样品在1590℃下保温4 h获得的微波介电性能最佳, εr~9.82, Q×f ~225, 225 GHz。Q×f值的这种变化可能与样品微观结构的变化相关。先是随着MgO/Eu2O3共掺量的增加, 晶粒尺寸不断增加, 晶界不断减少, 这有利于Q×f值的提高; 接着, 当MgO/Eu2O3共掺量进一步增加时, 晶粒尺寸不断下降, 晶界增多, 这会导致样品Q×f值的降低。另外, 应力和第二相也可能对Q×f值的变化产生影响。  相似文献   

7.
潘晨  乔梁  郑精武  蔡伟  应耀  车声雷 《材料工程》2021,49(3):125-132
原料粉体的均匀分散是3Y-ZrO2/Al2O3陶瓷制备的关键。在工程应用中三辊混合适合于超细陶瓷粉体高黏度浆料的分散,有利于降低分散介质用量,减少干燥时间。本工作以商用3Y-ZrO2粉体(粒径80 nm)和粗细两种Al2O3粉体(粒径3μm和0.3μm)为原料,通过三辊混合、干压成型与烧结,制备3Y-ZrO2/Al2O3复相陶瓷。通过XRD,SEM和万能试验机研究3Y-ZrO2/Al2O3复相陶瓷的相组成、显微结构以及弯曲强度之间的关系。结果表明:在3Y-ZrO2/Al2O3复相陶瓷中,除常见的Al2O3晶粒弥散相和ZrO2连续相外,还存在最大尺寸5~10μm的Al2O3微聚集区。当添加粗Al2O3粉时,3Y-ZrO2会发生从四方相到单斜相的转变。而当添加细Al2O3粉时,四方相的衍射峰向右偏移,同时没有检测到单斜相。对1600℃烧结的复相陶瓷样品,两种Al2O3粉的适量添加均有利于获得最大的弯曲强度。但对含有细Al2O3粉的样品,弯曲强度较粗Al2O3粉样品随Al2O3体积分数的增加更为平缓。  相似文献   

8.
以ZnO-Na2O-SiO2-Al2O3-B2O3陶瓷体系为基础, 制备了添加不同摩尔比Li2O和MgO的陶瓷结合剂及立方氮化硼(cBN)磨具。利用X衍射测试仪、线性热膨胀测试仪、扫描电镜等研究了MgO∶Li2O摩尔比( M 值)和烧结温度对陶瓷结合剂及磨具性能的影响。结果表明: 随着 M 值增加, 结合剂的软化点温度增加, 耐火度及化学稳定性均增强, 线性热膨胀系数先增加后降低。当 M 值为0.67时, 随着烧结温度的升高, 石英晶相的析出被抑制, 诱导析出Mg(Zn)Al2O4晶相, 且含量逐渐增加, 尺寸先减小后增加; 当温度为870 ℃时, Mg(Zn)-Al2O4晶粒尺寸最小, 约为2 μm, 结合剂结构最为致密, 抗折强度达到最大值136.28 MPa。随着烧结温度的提高, cBN磨具气孔率和吸水率先降低后增加, 体积密度、硬度、抗折强度、磨耗比以及磨削效率先增加后降低; 当烧结温度为890 ℃, 磨耗比及磨削效率最高, 分别为98.72%和1.3675 g·min-1。  相似文献   

9.
高熵陶瓷是近年来陶瓷材料研究的热点, 制备性能优异的高熵陶瓷是陶瓷材料的发展趋势。本研究采用燃烧法结合真空烧结制备出高熵透明陶瓷。测试结果显示燃烧法制备高熵(La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7粉体的平均晶粒尺寸为8 nm, 高熵粉体为无序的缺陷萤石结构。在真空炉中不同温度烧结的高熵陶瓷具有有序的烧绿石结构。烧结温度对高熵透明陶瓷的在线透过率影响不大, 最大透过率为74%(@1730 nm), 其透过率光谱中出现大量吸收峰。随着烧结温度的升高, 陶瓷的体积密度有所上升, 晶粒尺寸增大, 而维氏硬度逐渐降低。  相似文献   

10.
SPS制备亚微米晶氧化铝陶瓷   总被引:2,自引:0,他引:2  
以商业α-Al2O3粉体为原料, MgO为烧结助剂, 采用放电等离子烧结技术(SPS)制备亚微米晶氧化铝陶瓷. 系统研究了烧结温度、烧结助剂含量对亚微米晶氧化铝陶瓷的致密化过程及显微结构的影响. 分析结果表明, 1250℃以及0.05wt%分别是最佳的烧结温度和烧结助剂含量; 在此条件下获得的亚微米晶氧化铝陶瓷, 其相对密度达到99.8%TD(theoretical density),平均晶粒尺寸约0.68μm,显微硬度(HV5)达到20.75GPa,在3~5μm中红外范围内直线透过率超过83%. 当MgO掺杂量超过0.1wt%时, 第二相MgAl2O4形成, 引起光散射, 降低红外透过率.  相似文献   

11.
以Al2O3陶瓷成型体为基体,通过化学气相反应在陶瓷体内原位生长碳纳米管(CNTs),制备出CNTs/Al2O3陶瓷复合材料。结果表明,Al2O3陶瓷体中均匀分布有可观量的多壁CNTs,碳管根部嵌于Al2O3晶粒间并从晶粒表面生长出。在Al2O3陶瓷成型体中原位生长CNTs需严格控制生长条件,尤其是生长温度(850℃),温度过高和过低都难以长出CNTs,此外造孔剂、碳源和催化剂也影响CNTs的原位生长。对原位生长的CNTs/Al2O3复合体进一步高温烧结获得致密化的复合材料,其导电率达3.7 S/m,较纯Al2O3提高13个数量级。在陶瓷成型体中原位生长CNTs是一步法制备CNTs/陶瓷复合材料的新方法,可用于发展高性能的结构陶瓷和具有导电导热等多功能特性的新型陶瓷复合材料。  相似文献   

12.
采用高纯Al2O3粉末为原料,在氢气气氛中烧结了氧化铝透明陶瓷。研究了添加剂MgO和烧结温度对Al2O3透明陶瓷致密化过程、显微结构和性能的影响。实验结果表明,适量掺杂MgO能够抑制晶粒生长,改善烧结性能,提高致密度,0.05%(质量分数)是MgO最佳含量;随着烧结温度的升高,晶粒发育完全,透光率增加,1850℃为最佳烧结温度;在最佳条件下获得的氧化铝透明陶瓷,相对密度为99.72%,平均晶粒尺寸约20μm,总透光率达到93%,显微硬度(HV5)为20.75GPa,抗弯强度达到320MPa。  相似文献   

13.
以高纯Y2O3, α-Al2O3, Yb2O3粉体作为原料, 采用固相反应和真空烧结法(1750 ℃, 30 h)制备了高光学质量的Yb:YAG透明陶瓷。5.0at% Yb:YAG陶瓷中Yb 3+的实测浓度为6.41×10 20 cm -3, 晶胞密度为4.65 g/cm 3。本工作重点研究了Yb:YAG陶瓷的显微结构、光谱特性和激光性能参数。场发射扫描电镜(FESEM)结果表明, Yb:YAG陶瓷的结构均匀致密、晶界干净平直, 平均晶粒尺寸为(19±3) μm。该陶瓷样品(厚度为4.0 mm)在400 nm处的直线透过率为82.5%, 在1100 nm处的透过率为85.2%。泵浦波长940 nm处的泵浦饱和光强最小, 激光波长1030 nm处的泵浦阈值功率最低, 940 nm泵浦1030 nm激光的品质因子为1.02×10 -22 cm·s。通过计算增益截面表明Yb:YAG陶瓷宽带可调谐, 是理想的激光增益材料。  相似文献   

14.
细化陶瓷微观结构至纳米级, 可以减少光的散射损失, 为开发新型光学陶瓷提供了一种有效的方法。本研究采用溶胶-凝胶法合成粉体, 结合热压烧结工艺制备出光学性能优异的新型Lu2O3-MgO纳米复合陶瓷, 研究了粉体合成条件及热压烧结工艺对样品微观结构的影响, 并对计算的理论透过率与样品的实际透过率进行了比较。研究结果表明: 采用优化后工艺制备的Lu2O3-MgO陶瓷具有均匀的相域分布, 晶粒尺寸约为123 nm, 3~5 μm波段的透过率高达84.5%~86.0%, 接近理论透过率; 维氏硬度为12.2 GPa, 断裂韧性为2.89 MPa·m-1/2, 抗弯强度达到(221±12) MPa, 是一种潜在的红外透明窗口材料。  相似文献   

15.
本研究以ZnO透明陶瓷为研究对象, 基于Mie理论及Rayleigh-Debye近似散射理论, 建立了单轴六方晶系透明陶瓷的双折射散射与其直线光学透过率之间关联的理论模型, 阐明了ZnO透明陶瓷光学直线透过率随晶粒尺寸减小、陶瓷织构度的提升而增大的关系。采用强磁场下的注浆成型工艺结合优化放电等离子体烧结参数, 实现了ZnO透明陶瓷显微结构的有效调控, 使得制备的ZnO透明陶瓷符合模型要求。实验结果表明: 当ZnO陶瓷平均晶粒尺寸从1.72 μm减小至0.66 μm时, 其600 nm处的直线透过率从5.1%提高到12.9%; 对于亚微米级ZnO陶瓷(平均晶粒尺寸0.35 μm), 当陶瓷织构度从4.0%提高到24.7%时(XRD计算), 样品光学直线透过率从21.6%提升到36.6%。所获得实验结果与构建的理论模型计算结果吻合, 证实了所构建的模型。  相似文献   

16.
为更好地实现口腔修复体的美学修复效果,采用掺杂不同含量Fe2O3(0.01wt%~0.09wt%)和Al2O3(0.1wt%)的3 mol% Y2O3稳定的ZrO2(3Y-TZP)粉体为原料,经过铺粉、压制、烧结等工艺制得色度渐变的多层陶瓷结构Al2O3-Fe2O3/3Y-TZP梯度复合陶瓷。对该梯度复合陶瓷的色度分布、烧结性能和力学性能进行检测,同时研究了Fe2O3和Al2O3的掺杂对3Y-TZP陶瓷组织和性能的影响。结果表明,制得的Al2O3-Fe2O3/3Y-TZP梯度复合陶瓷色度由红黄向白色沿成分变化方向呈梯度变化,与天然牙齿色度分布规律一致;力学性能呈梯度变化并从无色端到有色端逐渐降低,但仍满足牙科使用需求(≥ 800 MPa);在无色瓷层中掺杂微量Al2O3(0.1wt%)可以改善Al2O3-Fe2O3/3Y-TZP梯度复合陶瓷的烧结性能,避免在预烧结过程中发生开裂。微量Fe2O3和Al2O3的掺杂会促进其在烧结过程中的致密化及晶粒长大;微量Fe2O3(0.01wt%)和Al2O3(0.1wt%)的掺杂有助于提高3Y-TZP陶瓷的挠曲强度,然而随着Fe2O3掺杂量的继续增多(≤ 0.09wt%)挠曲强度降低。   相似文献   

17.
以CaO-B2O3-SiO2(CBS)玻璃粉体和Al2O3陶瓷粉体为原料,通过在CBS与Al2O3的质量比固定为50:50的玻璃-陶瓷复合材料中添加适量的Bi2O3作为烧结助熔剂,探讨了Bi2O3助熔剂对CBS/Al2O3复合材料的烧结性能、介电性能、抗弯强度和热膨胀系数的影响规律.研究表明:Bi2O3助熔剂能通过降低CBS玻璃的转变温度和黏度促进CBS/Al2O3复合材料的致密化进程,于880 ℃下烧结即能获得结构较致密、气孔较少的CBS/Al2O3复合材料.然而,过量添加Bi2O3将使玻璃的黏度过低,从而恶化CBS/Al2O3复合材料的烧结性能、介电性能及抗弯强度.当Bi2O3的添加量为CBS/Al2O3复合材料的1.5wt%时,于880 ℃下烧结即能获得最为致密的CBS/Al2O3复合材料,密度为2.82 g·cm-3,这一材料具有良好的介电性能(介电常数为7.21,介电损耗为1.06×10-3),抗弯强度为190.34 MPa,0~300 ℃的热膨胀系数为3.52×10-6 K-1.  相似文献   

18.
无水乙醇注浆成型制备YAG透明陶瓷   总被引:3,自引:0,他引:3  
以无水乙醇作为分散介质,采用注浆成型工艺和真空烧结技术制备了光学质量良好的YAG透明陶瓷.双面抛光、厚度为3mm的YAG透明陶瓷样品(烧结温度1800℃)在可见光范围内的直线透过率为79%左右,在近红外波段的透过率为80%左右,接近理论透过率84%.样品的平均晶粒尺寸约为30μm,晶界处和晶粒内部均无杂质和第二相存在,也几乎没有气孔的残留.采用无水乙醇做分散剂进行注浆成型是一种很有发展潜力的透明陶瓷成型方法.  相似文献   

19.
Nd:Lu2O3材料由于具有高热导率、低声子能量和优异的光学特性而成为非常有前景的高功率固体激光器用的增益介质。但Lu2O3单晶的熔点超过2400 ℃, 难以生长, 而Lu2O3陶瓷既能在低温下制备, 又具有与晶体相当的光学性质和激光性能从而备受关注。本研究制备了高透明的Nd:Lu2O3陶瓷并对其光学性质和激光性能进行探究。以共沉淀法制备的纳米粉体为原料, 采用真空烧结结合热等静压(HIP)两步烧结法制备了1.0at%Nd:Lu2O3透明陶瓷。对制备的粉体、素坯和陶瓷的微结构进行了表征: HIP后处理的陶瓷平均晶粒尺寸是724.2 nm。厚度为1.0 mm的1.0at%Nd:Lu2O3透明陶瓷在1100 nm处的直线透过率是82.4%, 样品在806 nm处的吸收截面为1.50′10-20 cm2, 而根据荧光光谱计算得到的发射截面为6.5′10-20 cm2。分别在878.8 和895.6 nm波长激发下, 1.0at%Nd:Lu2O3透明陶瓷4F3/2·4I11/2跃迁的平均荧光寿命均为169 ms。当输出耦合镜的透过率TOC=2.0%时, 退火后的1.0at% Nd:Lu2O3透明陶瓷获得了最大输出功率为0.47 W的准连续(QCW)激光输出, 斜率效率为8.7%。本研究成功制备了显微结构均匀、高透明度的1.0at%Nd:Lu2O3陶瓷, 并展示了其在固体激光增益介质领域的广阔应用潜力。  相似文献   

20.
Lu2O3是具有高热导率而成为极具潜力的高功率激光介质材料。实验以商用氧化物粉体为原料, LiF为烧结助剂, 采用放电等离子烧结法制备了不同Nd3+掺杂浓度(CNd=0, 1at%, 3at%和5at%) Lu2O3透明陶瓷, 并研究了Nd3+掺杂浓度对Lu2O3陶瓷的物相、烧结性能、微观结构及光学性能的影响。结果表明:在高Nd3+浓度(5at%)掺杂后烧结样品仍为纯Lu2O3相;Nd3+掺杂对Lu2O3陶瓷烧结性能及微观形貌的影响有限;所有样品最终均表现出高致密性(99.5%以上)和优异的透光性能, 其中3at% Nd3+:Lu2O3的透过率最高, 在1064和2000 nm处的透过率分别为82.7和83.2%。Nd3+:Lu2O3透明陶瓷的最强发射峰位于1076和1080 nm;且随着Nd3+掺杂浓度的增加, 荧光强度降低, 寿命变短, 发生浓度淬灭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号