首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
丙烯酸树脂的无皂乳液聚合及增稠性能   总被引:2,自引:0,他引:2  
以聚乙烯醇为胶体保护剂、N,N′-亚甲基双丙烯酰胺为交联剂,用过硫酸钾-亚硫酸钠引发丙烯酸、丙烯酰胺、丙烯酸丁酯进行无皂乳液聚合,以制备高性能的涂料印花增稠剂。并研究了引发剂、胶体保护剂、丙烯酸丁酯、交联剂的用量等聚合条件对乳液性能的影响。结果表明:引发剂用量增加,增稠剂粘度下降,稳定性提高:采用 PVA 作为胶体保护剂,产物增稠能力强,稳定性好,耐电解质等综合性能均较好;丙烯酸丁酯的加入可提高无皂乳液的稳定性;交联剂用量增加可使增稠剂的粘度出现极大值.当引发剂用量为0.2%,PVA为30%,丙烯酸丁酯为14%,交联单体为0.3%时,乳液的粘度达10 Pa·s,且乳液的稳定性最好。  相似文献   

2.
含辣椒碱的抗菌高吸水树脂的合成   总被引:4,自引:0,他引:4  
以过硫酸铵、亚硫酸氢钠作引发剂,N,N’-亚甲基双丙烯酰胺作交联剂,将木薯淀粉与丙烯酸、辣椒碱在水溶液中接枝共聚,合成了具有抗菌性的高吸水性树脂。考察了添加辣椒碱形式、反应温度、反应时间、丙烯酸中和度、引发剂和交联剂用量对产物吸水性能的影响,结果表明,添加辣椒碱提取母液,在70℃下反应2.5h,丙烯酸中和度85%,引发剂和交联剂用量分别为0.6%和0.04%时,合成的吸水树脂有较高的吸水倍率。  相似文献   

3.
微波法合成两性高吸水性树脂   总被引:9,自引:0,他引:9  
以甲基丙烯酸二甲氨基乙酯和丙烯酸为单体,N,N-亚甲基双丙烯酰胺为交联剂,偶氮二异丁腈的丙酮溶液为引发剂,利用微波的照射进行水溶液聚合,制得两性高吸水性树脂。研究了共聚物的吸液性能与共聚单体组成、反应液pH值、交联剂用量、引发剂用量诸因素的关系。所制得的树脂吸水率达1060g/g,对50%的甲醇水溶液的吸液率达280g/g,对0.9%的盐水溶液的吸液率为170g/g。  相似文献   

4.
实验以过硫酸钾-亚硫酸钠氧化还原体系为引发剂、N,N′-亚甲基双丙烯酰胺为交联剂,制备丝胶-丙烯酸-丙烯酰胺接枝共聚型吸水树脂。产物经红外光谱表征。研究了不同反应条件下得到的聚合物吸蒸馏水和生理盐水的能力,探讨了影响产品吸水性能的因素。结果表明:当引发剂用量与单体总质量比为1.25%,交联剂用量与单体总质量比为0.01%,中和度为75%,丙烯酰胺与丙烯酸质量比为0.7:1,聚合温度55℃,聚合时间6 h时,所得产物吸液能力较佳,随丝胶用量的增加,产物吸液能力缓慢上升。当丝胶用量为4%时,产物吸蒸馏水能力为1 847倍,吸盐水能力为112倍。  相似文献   

5.
聚(苯乙烯-甲基丙烯酸烷基酯)高吸油树脂的合成及表征   总被引:7,自引:1,他引:6  
采用悬浮聚合法制备了聚(苯乙烯-甲基丙烯酸烷基酯)高吸油树脂,考察了甲基丙烯酸烷基酯种类、单体配比、引发剂用量、交联剂用量和分散剂用量对高吸油树脂吸油率的影响。实验结果表明,当m(甲基丙烯酸十二酯)∶m(苯乙烯)=4∶3、引发剂过氧化二苯甲酰用量(占单体混和物的质量分数)为0.8%、交联剂二乙烯基苯用量(占单体混和物的质量分数)为0.8%、分散剂聚乙烯醇用量(占单体混和物的质量分数)为3%时,所合成的聚(苯乙烯-甲基丙烯酸十二酯)高吸油树脂对甲苯和三氯甲烷的吸油率分别为13.9,24.6g/g。并用傅里叶变换红外光谱、扫描电镜、热重和示差扫描量热法对高吸油树脂的结构和性能进行了表征。表征结果显示,制得的产物为苯乙烯与甲基丙烯酸烷基酯的共聚物,其使用温度可达130℃。  相似文献   

6.
以丙烯酸(AA),甲基丙烯酸(MAA),丙烯酸丁酯(BuAc),甲基丙烯酸甲酯(MMA)为单体,过硫酸钾(KPS)为引发剂,十二烷基硫酸钠(SDS)为乳化剂,三乙醇胺与无水亚硫酸钠分别为链转移剂与终止剂,水为分散介质,采用乳液法合成了一种水溶性四元共聚物破乳剂。考察了水用量、乳化剂用量、引发剂用量、加料速率、聚合温度、单体配比、链转移剂与终止剂用量等反应条件对产物破乳性能的影响,并且对原油破乳条件进行了讨论,对产物进行了红外检测分析。结果表明:在水用量60g、乳化剂用量1.6g、引发剂用量0.25g、加料时间130 min、聚合温度80~85℃、链转移剂与终止剂分别为0.1g与0.15 g、单体总量20 g、m(AA):m(MAA):m(BuAc):m(MMA)=0.75:0.25:12:2条件下,所得产物的原油破乳脱水率最佳。当加药量300 mg/L时,原油脱水率达97.01%。  相似文献   

7.
以煤油为连续相,水为分散相,Span80丙烯酸酯/Span80/Twen80为复配乳化剂,过硫酸钾和亚硫酸氢钠为引发剂,N,Nl-亚甲基双丙烯酰胺为交联剂,丙烯酸、丙烯酸钠为单体,采用反相乳液聚合法合成印染增稠剂.考察了交联剂用量、丙烯酰胺用量、引发剂浓度、单体浓度、聚合温度、反应时间等对增稠剂黏度和聚合转化率的影响,确定了最佳实验条件,并考察了增稠剂的抗电解质性及流变特性.实验结果表明较理想反应条件为:煤油45 g,水相60 g,质量比为0.8:0.3:0.1的三元乳化剂(可聚合乳化剂、Span80与Twen80)在乳液中质量分数为6.67%,水相中丙烯酸-丙烯酸钠浓度为3 mol/L,总单体中丙烯酸钠摩尔分数为0.82,n(交联剂):n(总单体)=1.803×10-2,n(丙烯酰胺):n(总单体)=0.063,m(引发剂用量):m(总单体)=0.036%,反应时间为7 h,反应温度为23℃.该增稠剂具有较好的抗电解质性及流变特性.  相似文献   

8.
聚丙烯酸类超强吸水剂的反相悬浮聚合法制备研究   总被引:2,自引:0,他引:2  
以 6号溶剂油为分散介质 ,Span85 OP7为分散剂 ,N ,N′ 亚甲基双丙烯酰胺为交联剂 ,过硫酸钾 亚硫酸钠为氧化还原引发剂 ,采用反相悬浮聚合法合成了丙烯酸 丙烯酸钠交联共聚超强吸水剂。探讨了该合成工艺的最佳反应条件。产物呈均匀微粒状 ,易干燥 ,吸水率达 12 5 0 g/g ,对 0 .9%盐水溶液的吸液倍率为 110g/g。  相似文献   

9.
纤维素接枝甲基丙烯酸烷基酯制备吸油材料   总被引:5,自引:3,他引:2  
以棉浆粕(纤维素)为基材、甲基丙烯酸烷基酯为接枝单体、双丙烯酸二元醇酯为交联剂,采用悬浮接枝聚合法合成了纤维素基吸油材料。用FTIR和SEM手段对产物的结构进行了表征,考察了引发剂的种类及用量、接枝单体种类及用量、交联剂种类及用量、反应温度和反应时间等因素对吸油材料吸油率的影响。纤维素基吸油材料的最佳合成条件:m(棉浆粕)∶m(K2S2O8引发剂)∶m(甲基丙烯酸丁酯接枝单体)∶m(双丙烯酸二元醇酯(B)交联剂)=1∶0.025∶1.5∶0.005,75℃下恒温反应6h;在此条件下合成的纤维素基吸油材料对大豆油、二甲苯和柴油的吸油率达到最大值,分别为16.2,14.3,13.7g/g。  相似文献   

10.
以淀粉为原料,丙烯酰胺为单体,硫酸铈铵为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,采用接枝共聚法制备了高吸水性树脂。研究了单体与淀粉质量比、引发剂浓度、交联剂用量以及NaOH用量对产物吸水倍率的影响。实验结果表明:当单体与淀粉质量比为3:1,引发剂浓度为5.0mmol/L,交联剂用量为单体质量的0.20%,NaOH用量为单体质量的30%时,产物的吸水倍率可达1000倍以上。  相似文献   

11.
以煤油为连续相,水为分散相,Span80丙烯酸酯/Span80/Twen80为复配乳化剂,过硫酸钾和亚硫酸氢钠为引发剂,N,N'-亚甲基双丙烯酰胺为交联剂,丙烯酸、丙烯酸钠为单体,采用反相乳液聚合法合成印染增稠剂。考察了交联剂用量、丙烯酰胺用量、引发剂浓度、单体浓度、聚合温度、反应时间等对增稠剂黏度和聚合转化率的影响,确定了最佳实验条件,并考察了增稠剂的抗电解质性及流变特性。实验结果表明较理想反应条件为:煤油45 g,水相60 g,质量比为0.8:0.3:0.1的三元乳化剂(可聚合乳化剂、Span80与 Twen80)在乳液中质量分数为6.67%,水相中丙烯酸一丙烯酸钠浓度为3 mol/L,总单体中丙烯酸钠摩尔分数为0.82,n(交联剂):n(总单体)=1.803×10~(-3),n(丙烯酰胺):n(总单体)=0.063,m(引发剂用量):m(总单体)=0.036%,反应时间为7 h,反应温度为23℃。该增稠剂具有较好的抗电解质性及流变特性。  相似文献   

12.
两步聚合法制备两性聚丙烯酰胺增稠剂   总被引:1,自引:1,他引:0  
采用两步聚合法,即甲基丙烯酰氧乙基三甲基氯化铵自聚得到聚电解质聚甲基丙烯酰氧乙基三甲基氯化铵(PDMC);PDMC与丙烯酸、长碳链疏水单体丙烯酸十八酯(ODA)等单体共混,以N,N’-亚甲基双丙烯酰胺(MBAM)为交联剂、过硫酸钾为引发剂进行反相乳液聚合,得到疏水缔合型具有互穿网络结构的两性聚丙烯酰胺增稠剂乳液。考察了该增稠剂的交联结构、PDMC用量、ODA用量、MBAM用量对增稠剂乳液增稠能力及耐盐性能的影响。实验结果表明,当PDMC用量(相对于增稠剂乳液的质量分数,下同)为13.800%、ODA用量为0 600%、MBAM用量为0.170%时,增稠剂具有优良的增稠能力和耐盐性能。  相似文献   

13.
反相乳液聚合制备增稠剂   总被引:2,自引:0,他引:2  
通过反相乳液聚合制备了一种增稠剂,考察了交联剂、引发剂及疏水共聚单体对增稠剂性能的影响。结果表明,聚合过程中加入疏水共聚单体,可有效改善增稠剂的粘度和耐电解质性能。  相似文献   

14.
合成了分散剂聚甲基丙烯酰氧乙基三甲基氯化铵(PDMC);以丙烯酰胺(AM)为单体、PDMC为分散剂、硫杂蒽酮封端聚乙烯亚胺为引发剂,在硫酸铵分散介质中通过光引发分散聚合,在无搅拌的条件下合成了以聚乙烯亚胺为核的星形聚丙烯酰胺(PEI-PAM);考察了分散剂、单体、分散介质的含量及引发剂浓度、反应时间对聚合反应的影响,评价了PEI-PAM盐水溶液对油田污水的浮选效果。实验结果表明,当聚合体系中w(PDMC)=2.0%~3.6%、w(AM)=8.0%~12.0%、w(硫酸铵)=26.5%~28.0%、c(硫杂蒽酮基团)=0.038~0.050 mmol/L时,在30℃、反应时间25~35 min的条件下,聚合反应的转化率大于90%,聚合产物PEI-PAM盐水溶液的稳定性好,其表观黏度为400~1 650 mPa.s,PEI-PAM的黏均相对分子质量为(0.8~1.9)×106。PEI-PAM对油田污水的浮选效果优于聚铝。  相似文献   

15.
田大听  谢洪泉 《石油化工》2002,31(10):834-836
采用反相乳液聚合法合成了含丙烯酸 /丙烯酰胺 /甲基丙烯酸十六酯三元共聚物的缔合型增稠剂。研究了交联剂、引发剂、疏水共聚单体、亲水非离子型共聚单体的用量等聚合条件对增稠剂性能的影响。结果表明 ,共聚单体的疏水效应及非离子效应都有利于改善增稠剂的性能  相似文献   

16.
油田回注水微生物腐蚀贡献率的研究   总被引:1,自引:0,他引:1  
为了满足高温碳酸盐岩储层深度酸压的要求,优选了交联酸稠化剂和交联剂并与酸液添加剂形成了一种抗高温交联酸压裂液体系。稠化剂和交联剂的优劣直接决定了交联酸在高温下的综合性能,通过对稠化剂酸溶性、酸基液热稳定性及交联剂的交联时间、交联粘度、交联酸的抗温时间等指标的分析,确定了最佳稠化剂为DM3802,最佳交联剂为JL-10,并确定了用量。与酸液添加剂的配伍性实验也表明该体系配伍性良好。在120℃下对该交联酸压裂液的综合性能进行了评价,实验表明该体系具有良好的抗高温、抗剪切、携砂性能、低滤失、易破胶等特点。  相似文献   

17.
文章以2-丙烯酰胺基-2-甲基丙磺酸、丙烯酰胺、甲基丙烯酰丙基三甲基氯化铵为单体,采用水溶液聚合法制备了丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸/甲基丙烯酰丙基三甲基氯化铵三元共聚物稠化剂。研究了三元共聚物稠化剂形成的交联冻胶的耐温耐盐性、携砂性和破胶性能。结果表明,2-丙烯酰胺基-2-甲基丙磺酸:丙烯酰胺:甲基丙烯酰丙基三甲基氯化铵=2:7:1、引发剂加量为0.25%、反应温度50℃、反应时间3.5h,pH值为6~8条件下制备的三元共聚物稠化剂的具有良好的性能。以质量分数0.4%三元共聚物稠化剂为主剂的压裂液在70 000 mg/L矿化度下黏度仍大于100 mPa·s,在温度100℃、返排液条件下黏度仍为146.3 mPa·s。与羟丙基胍胶相比,三元共聚物稠化剂聚合物冻胶中支撑剂的沉降速度更小,破胶液残渣含量更少,对储层的伤害率更低。  相似文献   

18.
反相乳液聚合制备丙烯酰胺-丙烯酸铵共聚物   总被引:4,自引:4,他引:0  
采用反相乳液聚合法,以液体石蜡为连续相、丙烯酰胺和丙烯酸水溶液为分散相、N,N′-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂,制备了丙烯酰胺(AM)-丙烯酸铵(AA)共聚物;考察了引发剂含量、单体AM含量、复合乳化剂Span-80与Tween-80的配比、聚合体系pH、聚合温度、油水比等对AM-AA共聚物性能的影响。较佳的聚合条件为:过硫酸铵占单体总质量的0.7%,AM占丙烯酸质量的40%~45%,m(油)∶m(水)=1.1,m(Span-80)∶m(Tween-80)=92∶8(Span-80和Tween-80复合乳化剂的亲水亲油平衡值约为5.2),聚合温度60~70℃,聚合体系pH约为9.0。在此条件下,制得的AM-AA共聚物的黏度较大,稳定性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号