首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fat/oil blends, formulated by mixing fully hydrogenated palm oil stearin or palm oil stearin with vegetable oils (canola oil and cottonseed oil) in different ratios from 30:70 to 70:30 (w/w %), were subjected to chemical interesterification reactions on a laboratory scale. Fatty acid (FA) composition, iodine value, slip melting point (SMP) and solid fat content (SFC) of the starting blends were analysed and compared with those of the interesterified blends. SMPs of interesterified blends were decreased compared to starting blends because of extensive rearrangement of FAs among triacylglycerols. These changes in SMP were reflected in the SFCs of the blends after the interesterification. SFCs of the interesterified blends also decreased with respect to the starting blends, and the interesterified products were softer than starting blends. These interesterified blends can be used as an alternative to partial hydrogenation to produce a plastic fat phase that is suitable for the manufacture of margarines, shortenings and confectionary fats.  相似文献   

2.
Chemical interesterification is an important technological option for the production of fats targeting commercial applications. Fat blends, formulated by binary blends of palm stearin and palm olein in different ratios, were subjected to chemical interesterification. The following determinations, before and after the interesterification reactions, were done: fatty acid composition, softening point, melting point, solid fat content and consistency. For the analytical responses a multiple regression statistical model was applied. This study has shown that blending and chemical interesterifications are an effective way to modify the physical and chemical properties of palm stearin, palm olein and their blends. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and palm olein.  相似文献   

3.
Blends of canola oil (CO) and fully hydrogenated cottonseed oil (FHCSO), with 20, 25, 30, 35 and 40% FHCSO (w/w) were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in disaturated-monounsaturated and monosaturated-diunsaturated triacylglycerols in all blends, resulting in lowering of respective melting points. The interesterified blends showed reduced SFC at all temperatures and more linear melting profiles if compared with the original blends. Consistency, expressed as yield value, significantly decreased after the reaction. Iso-solid curves indicated eutectic interactions for the original blends, which were eliminated after randomization. The 80:20, 75:25, 70:30 and 65:35 (w/w) CO: FHCSO interesterified blends showed characteristics which are appropriate for their application as soft margarines, spreads, fat for bakery/all-purpose shortenings, and icing shortenings, respectively.

PRACTICAL APPLICATIONS


Recently, a number of studies have suggested a direct relationship between trans isomers and increased risk of vascular disease. In response, many health organizations have recommended reducing consumption of foods containing trans fatty acids. In this connection, chemical interesterification has proven the main alternative for obtaining plastic fats that have low trans isomer content or are even trans isomer free. This work proposes to evaluate the chemical interesterification of binary blends of canola oil and fully hydrogenated cottonseed oil and the specific potential application of these interesterified blends in food products.  相似文献   

4.
Interesterification of appropriate blends of vegetable oils offers an alternative method for obtaining semi-solid fats without hydrogenation. Random interesterification was carried out on blends of different oils, namely palm oil and sunflower oil (8:2, 7:3 and 6:4 w/w), palm oil and rice bran oil (8:2 and 7:3 w/w), palm oil and coconut oil (9:1 and 6:4 w/w), as well as palm oil and soybean oil (7:3 w/w), in the presence of sodium methoxide as a catalyst (0.2% w/v). The melting characteristic of the interesterified fat obtained from a blend of refined red palm oil and sunflower oil blend, in the ratio of 4:1 (w/w; slip melting point 41C) indicated that this combination could be an ideal margarine fat base.  相似文献   

5.
Hard fractions of palm oil and coconut oil, blended in the ratios of 90:10, 85:15, 80:20 and 75:25, were interesterified for 8 h using Lipozyme TL IM. Major fatty acids in the blends were palmitic acid (41.7–48.4%) and oleic acid (26.2–30.8%). Medium‐chain fatty acids accounted for 4.5–13.1% of the blends. After interesterification (IE), slip melting point was found to decrease from 44.8–46.8 °C to 28.5–34.0 °C owing to reduction in solids content at all temperatures. At 37.5 °C, the blends containing 25% coconut stearins had 17.4–19% solids, which reduced to 0.4–1.5% on IE, and the slip melting point (28.6 and 28.8 °C) indicated their suitability as margarine base. The reduction in solid fat index of the interesterified fats is attributed to the decrease in high‐melting triacylglycerols in palm oil (GS3 and GS2U type) and increase in triolein (GU3) content from 1 to 9.2%. Retention of tocopherols and β‐carotene during IE was 76 and 60.1%, respectively, in 75:25 palm stearin and coconut stearin blend.  相似文献   

6.
In this study, the effect of interesterification (using sodium methoxide) on physicochemical characteristics of fully hydrogenated palm olein (FHPO)/soybean oil blends (10 ratios) was investigated. Interesterification changed free fatty acid content, decreased oil stability index, solid fat content (SFC) and slip melting point (SMP), and does not affected the peroxide value. With the increase of FHPO ratio, oil stability index, SFC and SMP increased in both the interesterified and non-interesterified blends. Fats with higher FHPO ratio had narrower plastic range, as well. Compared to the initial blends, interesterified fats had wider plastic ranges at lower temperatures. Both the non-interesterified and interesterified blends showed monotectic behavior. The Gompertz function could describe SFC curve (as a function of temperature, saturated fatty acid (SFA) content or both) and SMP (as a function of SFA) of the interesterified fats with high R2 and low mean absolute error.  相似文献   

7.
Trans-free interesterified fats were prepared from blends of hard palm stearin (hPS) and rice bran oil (RBO) at 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20 weight % using immobilized Mucor miehei lipase at 60°C for 6 h with a mixing speed of 300 rpm. Physical properties and crystallization and melting behaviors of interesterified blends were investigated and compared with commercial margarine fats. Lipase-catalyzed interesterification modified triacylglycerol compositions and physical and thermal properties of hPS:RBO blends. Slip melting point and solid fat contents (SFC) of all blends decreased after interesterification. Small, mostly β′ form, needle-shaped crystals, desirable for margarines were observed in interesterified fats. Interesterified blend 40:60 exhibited an SFC profile and crystallization and melting characteristics most similar to commercial margarine fats and also had small needle-like β′ crystals. Interesterified blend 40:60 was suitable for use as a transfree margarine fat.  相似文献   

8.
Melting characteristics and solid fat content of anhydrous milk fat (AMF), soft palm oil stearin (SPOs), hard palm oil stearin (HPOs) and their blends were studied by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy, respectively. Solid fat contents (SFC) determined by NMR were used to construct isosolid diagrams; these indicated the presence of an eutectic effect along the binary blends of AMF:SPOs which only could be observed at 5 and 10C. The effect was reduced after interesterification by sn-1,3-specific lipase. The modification also reduced the number of the distinct DSC melting peaks, demonstrating a better miscibility among the blended fats. A substantial decrease in DSC melting enthalpy of interesterified blends was found to be parallel to a decrease in SFC that was observed at 25–40C. Fatty acid composition showed that improved functionality of AMF may be due to an enrichment in long-chain saturated fatty acids contributed both by SPOs and HPOs.  相似文献   

9.
ABSTRACT:  Trans -free solid fats were synthesized from fully hydrogenated soybean oil (FHSBO), olive oil (OO), and palm stearin (PS) at different substrate weight ratios (10:20:70, 10:40:50 and 10:50:40) via lipase-catalyzed interesterification. The interesterified products contained mostly TAG (98.8% to 99.0%), and small amounts of MAG and DAG as by-products. The major fatty acids were oleic acid, palmitic acid, and stearic acid in the interesterified products, and the melting points ranged from 39 to 45 °C. The amount of α-tocopherol was reduced by 75% to 92%. Volatile analysis by solid-phase microextraction indicated that OO and PS had distinct volatile profiles, in which 18 volatiles were retained in interesterified products. Furthermore, some volatiles disappeared or formed during processing. Electronic nose showed that the odors of substrates (OO and PS) were different from each other, and the odors of interesterified products were distinguishable from that of OO or PS. Among the interesterified products, the odor of blend FHSBO:OO:PS of 10:40:50 or 10:50:40 was different from that of blend FHSBO:OO:PS (10:20:70). However, no odor difference was observed between products blend FHSBO:OO:PS 10:40:50 and 10:50:40.  相似文献   

10.
The sodium methylate-catalyzed random interesterification of corn oil-tallow blends was explored in order to develop plastic fats of varying physical properties. Lipase hydrolysis of the randomized fats showed that with 0.5% catalyst, interesterification was completed within 30 min at 80°C. Interesterification decreased the melting point and solid fat index of the randomized fats. The trans- fatty acid level and fatty acid profile of the rearranged fats did not show any change upon interesterification. The oxidative stability of the fats decreased after random interesterification, but addition of 0.01% citric acid and 0.01% butylated hydroxyanisole produced a fat blend of comparable stability to commercial margarine oils.  相似文献   

11.
《Food chemistry》1998,61(3):301-305
Refined olive oil and partially hydrogenated palm oil (PHPO) blends of varying proportions were subjected to both chemical and enzymatic interesterifications. The rearranged fats were investigated for their melting points, solid fat contents at selected temperatures, fatty acid compositions and trans isomer contents, as well as evaluations, by an expert sensory panel, of their spreadibility and appearance characteristics. The analytical results were compared with those of commercial Turkish margarines. The 30:70 olive oil-PHPO blend after enzymatic interesterification was found to have properties very similar to those of Turkish package margarines, with the additional advantage of possessing higher amounts of monounsaturated fatty acids.  相似文献   

12.
Five domestic and four imported Malaysian plastic fat products and their separated high melting point triacylglycerols (HMG) were analyzed for their chemical and physical characteristics. Chemical characteristics consisted of fatty acid (FA) and triacylglycerol (by TG carbon number) composition. Physical characteristics encompassed dropping and softening points, solid fat content, polymorphic crystal habit and DSC melting and crystallization patterns. β crystal habit was related to high levels of 16 or 18 carbon fatty acids in the HMG and high levels of TG48 or TG54 which are β tending. Domestic products contained very low levels of trans fatty acids; they were blends of natural fats such as palm oil, palm kernel and milk fat. Levels of the individual fats in the blends were estimated by means of FA and TG composition analyses. The content of solid fat, determined by the AOCS method, was much lower than that obtained by the IUPAC method. Texture at 23C of products, as determined by penetrometer test of the original materials, was similar for all products.  相似文献   

13.
Blending and chemical interesterification of fats have been used to modify physical and chemical properties of natural fats. The objective of this study was to produce binary mixtures of butterfat and corn oil that serve as a base for a tablespread, keeping the desirable organoleptic qualities of butter, yet with higher contents of ω-6 fatty acids. Chemical interesterification was performed to improve butter’s physical properties, such as better spreadability. Liquefied butterfat and corn oil were mixed in different proportions and then chemically interesterified. Butterfat consisted of 66.5% saturated fatty acids, with palmitic acid being predominant. Corn oil had more than 50% of linoleic acid in its composition. Interesterification significantly reduced trisaturated and triunsaturated triacylglycerol contents and increased softening points in all blends. The negative coefficients of the blends from multiple regression of the solid fat content revealed a monotectic interaction between butterfat and corn oil in temperatures ranging from 10 to 35 °C, before and after interesterification.  相似文献   

14.
BACKGROUND: Trans‐free interesterified fat was produced for possible usage as a spreadable margarine stock. Rice bran oil, palm stearin and coconut oil were used as substrates for lipase‐catalyzed reaction. RESULTS: After interesterification, 137–150 g kg?1 medium‐chain fatty acid was incorporated into the triacylglycerol (TAG) of the interesterified fats. Solid fat contents at 25 °C were 15.5–34.2%, and slip melting point ranged from 27.5 to 34.3 °C. POP and PPP (β‐tending TAG) in palm stearin decreased after interesterification. X‐ray diffraction analysis demonstrated that the interesterified fats contained mostly β′ polymorphic forms, which is a desirable property for margarines. CONCLUSIONS: The interesterified fats showed desirable physical properties and suitable crystal form (β′ polymorph) for possible use as a spreadable margarine stock. Therefore, our result suggested that the interesterified fat without trans fatty acid could be used as an alternative to partially hydrogenated fat. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Structured lipids (SL) were synthesized via enzymatic (EI) and chemical interesterification of high oleic sunflower oil (SO) and fully hydrogenated high oleic SO with Lipozyme TL IM (Thermomyces lanuginose) for 3 h at 70°C, 300 rpm. Reaction showed changes in the triacylglycerols (TAGs) composition, solid fat content (SFC), thermal behavior, regiospecific distribution, microstructure, and polymorphism. Results revealed that the EI caused considerable rearrangement of the TAG species with lower levels of tri-saturated and tri-unsaturated TAG and higher levels of monoun- and diunsaturated TAG. The interesterified blends showed reduced SFC between 20 and 35°C, lowering the melting point. After 3-h incubation, EI produced acyl migration to some extent. The SL showed the required characteristics for application as bakery fats and as additives for lipid crystallization in the food industry.  相似文献   

16.
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 °C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filling base.  相似文献   

17.
Zero‐trans interesterified fats were produced from camellia seed oil (CSO), palm stearin (PS) and coconut oil (CO) with three weight ratios (CSO/PS/CO, 50:50:10, 40:60:10 and 30:70:10) using Lipozyme TL IM. Results showed that the interesterified products contained palmitic acid (34.28–42.96%), stearic acid (3.96–4.72%), oleic acid (38.73–47.95%), linoleic acid (5.92–6.36%) and total medium‐chain fatty acids (MCFA)s (∑MCFAs, 5.03–5.50%). Compared with physical blends, triacylglycerols of OOO and PPP were decreased and formed new peaks of equivalent carbon number (ECN) 44 in the interesterified products. The product CPC3′ showed a slip melting point of 36.8 °C and a wide plastic range of solid fat content (SFC) (45.8–0.4%) at 20–40 °C. Also, the major β′ form was determined. These data indicated that the zero‐trans interesterified fats would have a potential functionality for margarine fats. Subsequently, the antioxidative stabilities of interesterified products with the addition of α‐tocopherol (α‐TOH) and ascorbyl palmitate (AP) were investigated. The results indicated that AP had a dose‐dependent effect at concentrations of 100, 200 and 400 ppm.  相似文献   

18.
利用脂肪酶Lipozyme TL IM催化质量比为7:3的棕榈硬脂与大豆油进行酯交换反应,混合油脂中的高熔点甘三酯三棕榈酸甘油酯(PPP)的含量从27.61%降至9.50%。以酯交换油为主体,设计了5种不同塑性范围和固体脂肪含量的基料油,并以此基料油为原料制备出5种速冻专用油脂,然后将之应用于制作速冻汤圆。结果表明,当基料油中的油脂配比为酯交换油:大豆油:棕榈硬脂=84:13:3(wt%)时,所制备的专用油脂具有最佳的抗冻性能,以之制作的速冻汤圆冻裂率最低,仅为5%,而应用市售速冻专用油脂、未酯交换油脂制备的速冻专用油脂、未添加速冻专用油脂制作的的汤圆冻裂率分别为30%、20%和50%;此外,所得速冻汤圆表面细腻,光洁,有弹性,口感好,感官评分最高,表明通过酶促酯交换反应可以制备出品质优良的速冻专用油脂。  相似文献   

19.
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40% (w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of β′ polymorph, which is interesting for several food applications.  相似文献   

20.
Fat blends, formulated by mixing refined, bleached and deodorised (RBD) palm oil (PO) or RBD palm stearin (PS) with RBD rice bran oil (RBO) in various ratios were subjected to chemical interesterification (CIE) at pilot scale using sodium methoxide (NaOMe) as catalyst. The resultant interesterified fat was processed through a margarine crystalliser under optimised conditions. The blends before and after CIE were investigated for triacylglycerol (TAG) composition, solid fat content (SFC) and melting characteristics, polymorphic form, fatty acid composition (FAC), bioactive (tocols, sterols, oryzanol) constituents and trans fatty acids (TFA). CIE was found to be very effective in terms of rearrangement of fatty acids (FAs) among TAGs and consequent changes in the physical characteristics. The SFC of the interesterified PS/RBO blends decreased significantly ( P  ≤ 0.05) when compared with those of PO/RBO blends. The interesterified binary blends with 50–60% PS and 40–50% RBO, and 70–80% PO and 20–30% RBO had SFC curves in the range of all-purpose type shortenings. CIE facilitated the formation of β' polymorphic forms. FAC of shortenings prepared using the optimised blends contained 15–20% C18:2 polyunsaturated fatty acid (PUFA) and no TFA. Total tocol, sterol and oryzanol content of zero trans shortenings were 650–1145, 408–17 583 and 1309–14 430 ppm. CIE using NaOMe did not affect the bioactive constituents significantly ( P  ≤ 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号