首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
采用t-BAMBP[4-叔丁基-2-(α-甲苄基)酚]+磺化煤油的萃取体系,从回收钠盐后的浓缩液中萃取分离低浓度的铷,考察了料液碱度、t-BAMBP浓度、萃取相比、洗涤相比等影响因素对铷萃取以及反萃的影响。通过实验获得了适宜的单级萃取、洗涤和反萃的工艺条件:t-BAMBP浓度为1 mol/L,料液碱度为0.6 mol/L,萃取相比O/A=3,萃取时间为2 min;洗水用0.1 mol/L的氯化钠溶液,相比O/A=3,振荡时间为5 min;反萃剂盐酸浓度为1.0 mol/L,反萃相比O/A=5,反萃时间为8 min。以此条件进行9级分馏萃取(3级萃取、6级洗涤),铷萃取率达92.95%,钾100%留在水相中;进行5级逆流反萃,铷反萃率达99.62%。该萃取工艺成功地实现了低浓度铷的高效分离。  相似文献   

2.
本研究采用以D80为稀释剂的t-BAMBP萃取体系,从高钾卤水中萃取分离铷。考察了稀释剂种类、萃取剂浓度、萃取相比、碱度、萃取时间、水洗相比、反萃剂酸度、反萃相比、反萃时间等相关因素对分离的影响。选定萃取剂浓度为0.8 mol/L t-BAMBP,碱度0.8 mol/L NaOH,萃取相比2.5/1,萃取时间1 min,水洗相比2.5/1,反萃酸度1mol/L HCl,反萃时间1 min,反萃相比5/1等条件。经两次四级萃取,一次五级水洗,两次两级反萃获得纯度达97.5%的RbCl,铷总萃取率达92.7%。  相似文献   

3.
《化学工程》2017,(2):17-20
世界上92%以上的铷资源存在于盐湖卤水及地下卤水中,但卤水中铷与大量的物理化学性质极为相近的钾共存,致使铷的提取技术难度极大。文中以新型铷萃取剂4-甲基-2-(α-甲苄基)酚为研究对象,探讨新型萃取剂对铷钾萃取分离的工艺条件。实验通过单因素控制法得到铷钾分离最佳工艺条件:有机相组成为1.0 mol/L萃取剂和D60溶剂油,水相中碱度为0.5 mol/L的氢氧化钠,萃取时间3 min,相比(体积比)O/A=2.5/1(相比皆为体积比);水洗相比O/A=4/1,水洗时间2 min;反萃剂为2 mol/L的HCl,反萃相比O/A=5/1,反萃时间2 min。铷单级萃取率可达到75%以上,一级萃取后铷钾分离系数可达到25以上,铷的反萃率可以达到88.5%以上。4-甲基-2-(α-甲苄基)酚具有高效的铷钾萃取分离性能,为建立高钾卤水中铷的萃取分离技术提供了一条新的途径。  相似文献   

4.
以4-叔丁基-2-(α-甲苄基)酚(t-BAMBP)为萃取剂,从除钙净化母液中萃取分离铷、钾,考察了稀释剂种类、萃取时间、t-BAMBP浓度、原料碱度、萃取相比等因素对铷、钾分离的影响。对比研究确定的较优工艺条件为:以tBAMBP为萃取剂,磺化煤油为稀释剂,萃取剂浓度为1 mol/L,料液碱度为0.4 mol/L,相比(O/A)为2,萃取时间5 min,铷的萃取率可达90%,实现了铷钾分离。  相似文献   

5.
t-BAMBP萃取微量铷的基础研究   总被引:1,自引:0,他引:1  
为解决盐湖卤水中铷资源的开发利用问题,通过萃取法分离提取卤水中的微量铷元素。以t-BAMBP为萃取剂,磺化煤油为稀释剂,详细考察了料液碱度、振荡速度、振荡时间、萃取温度、萃取剂浓度和相比对萃取的影响。研究确定了在实验室条件下的最佳萃取工艺条件:t-BAMBP浓度1.5 mol/L、料液碱度OH-浓度1.2 mol/L、振荡速度200 r/min、相比1∶0.5、在5℃的条件下萃取5 min,铷的萃取率达98%。  相似文献   

6.
采用N503和TBP、正辛醇、煤油组成的复合萃取体系,对粉煤灰酸浸溶液中的铝与铁进行萃取分离,考察盐酸浓度、氯离子浓度、萃取剂比例对Fe3+萃取率的影响,以低浓度HCl溶液反萃负载铁有机相,并通过逆流实验确定最佳工艺条件. 结果表明,采用N503:TBP:正辛醇:煤油=3:1:1:5(j)的萃取体系,在初始铁浓度为0.96 mol/L、铝浓度为0.22 mol/L、萃取相比O/A=2:1条件下,经5级逆流萃取,Fe3+的萃取率大于99.8%,铝几乎没有损失. 用0.01 mol/L HCl溶液作反萃剂,反萃相比O/A=2.5:1,经6级逆流反萃,反萃液中铁浓度达1.8 mol/L. 分析了有机相负载铁前后官能团的红外光谱图.  相似文献   

7.
萃取法分离提取深层富钾卤水中的硼   总被引:1,自引:0,他引:1  
采用溶剂萃取法分离提取江陵凹陷深层富钾卤水中的硼,研究了萃取剂种类、体积分数、萃取时间、萃取相比、反萃剂体积分数、反萃相比和反萃时间等因素对萃取和反萃取的影响。结果表明:2-乙基-1,3-己二醇是较合适的硼萃取剂;在以体积分数为15%的2-乙基-1,3-己二醇、35%异辛醇的混合醇为萃取剂,50%磺化煤油为稀释剂,萃取相比为1∶1,萃取时间为15min的条件下,硼单级萃取率达95%以上,实现了硼与卤水中钾、钠、钙和镁的有效分离;在反萃剂NaOH浓度为0.625mol/L,反萃相比为2.5∶1,反萃时间为15min的条件下,硼单级反萃率达94%;最优的反萃取条件在确保反萃率较高的同时,提高了反萃液中B2O3质量浓度,由原料的8.33g/L富集到反萃液的19.10g/L,有助于后续硼酸蒸发浓缩阶段能耗的降低。  相似文献   

8.
对磷酸浸取含稀土磷矿得到的酸解溶液中稀土萃取回收进行研究。通过对萃取剂的选择,萃取和反萃条件的试验优化选取,从脱钙后得到的粗磷酸中利用萃取剂P204进行萃取,当相比为2∶1,P204浓度2 mol/L时,经过六级萃取后,萃取率达到97.13%。在相比O/A=1∶1,以6 mol/L HCl进行反萃时,一级反萃率可达到50%以上,采用六级可达近90%。  相似文献   

9.
以铜熔炼烟灰浸出液为研究对象,采用N902萃取剂从中分离回收铜,并将铜元素进行富集。研究了萃取剂浓度、相比(O/A)、溶液pH值、振荡时间对铜萃取分离的影响,以及反萃剂浓度、相比、振荡时间对铜反萃率的影响。试验结果表明,在萃取剂质量分数12%、相比(O)/(A)=1∶2、溶液pH值为2.0、振荡时间6 min的萃取条件下,通过两级逆流萃取,铜、锌、铁的萃取率分别为98.26%、1.29%、2.28%;铜与铁、锌的分离系数分别达到4346和2425,实现了铜与铁、锌的有效分离。在选定反萃剂硫酸铜浓度为2.5 mol/L、相比(O)/(A)=2∶1、振荡时间6 min的条件下,通过两级逆流反萃,铜的反萃率为94.68%,反萃后铜质量浓度达到7.04 g/L,相较于浸出液中铜离子质量浓度提高了约3.72倍,实现了铜离子的富集,得到的硫酸铜溶液可用于电积铜生产。  相似文献   

10.
P507从酸性硫脲浸金液中回收金   总被引:2,自引:0,他引:2  
研究了用P507的煤油溶液作为萃取剂,从酸性硫脲(TU)浸金液中回收金的性能. 用浓度为1.65 mol/L的P507萃取剂在料液[H2SO4]=0.335 mol/L, 相比O/A=1:1,两相接触时间5 min的条件下萃取金,得到金的一级萃取率达99.80%;用50 g/L的Na2SO3溶液反萃,一级反萃率达82.45%,同时达到金、铁的分离.  相似文献   

11.
以青海高钙油田水老卤为原料,考察了萃取相比(有机相与水相的体积比)、异辛醇体积分数、反萃相比等因素对硼萃取和反萃的影响。结果表明:在以磺化煤油为稀释剂、异辛醇体积分数为50%、萃取相比为1、萃取时间为15 min条件下,经过3级逆流萃取,硼的萃取率达到93.22%;在盐酸浓度为0.1 mol/L、反萃相比为1、反萃时间为15 min条件下,经过3级逆流反萃,硼的反萃率达到98.25%。采用异辛醇萃取—盐酸反萃—高温蒸发-低温冷却—重溶-冷却—过虑洗涤—干燥的工艺,可制得符合GB/T 538—2006《工业硼酸》要求的硼酸产品。  相似文献   

12.
以三辛胺(TOA)为萃取剂净化磷酸中的氟离子,考察了稀释剂、萃取剂浓度、萃取时间、温度对萃取的影响,并研究了磷酸中杂质离子的存在对脱氟性能的影响。结果表明,在萃取剂TOA浓度0.5 mol/L(稀释剂为磺化煤油),萃取时间20 min,温度303 K,转速200 r/min,相体积比(O/A)=1∶1的条件下,脱氟率可达70%以上。磷酸中[Fe3+]=0.02~0.07 mol/L,[Mg2+]=0.06~0.08 mol/L范围内,对萃取脱氟是有利的,铝离子和钙离子的存在均不利于氟、磷的分离。  相似文献   

13.
以西藏某盐湖卤水浓缩液为研究对象,对影响萃取和反萃取的诸多因素如料液酸度、萃取剂配比、萃取和反萃取时间、反萃取剂浓度、相比等进行了详细试验研究,获得了混合醇提硼适宜的萃取条件:原料液pH=3,混合醇萃取剂与磺化煤油的体积比V(2-乙基-1,3-己二醇)∶V(异辛醇)∶V(磺化煤油)=3∶7∶10,相比为1.0,萃取时间为 10 min;反萃取条件:反萃取剂浓度为0.3 mol/L,相比为1.0,反萃取时间为10 min。在此工艺条件下,萃取率>96%,反萃取率>95%。另外,在本原料液体系中,以二元醇与一元醇的混合醇作为萃取剂萃取硼,萃取效果远好于一元醇。  相似文献   

14.
研究了磷酸三丁酯(TBP)-磺化煤油体系从重庆某企业甘氨酸生产副产物硫酸铵母液中萃取分离HCN的工艺,考察了萃取体系、TBP体积分数、母液初始pH值、相比(Vorg∶Vaq)对萃取HCN的影响以及氢氧化钠浓度、相比(Vaq∶Vorg)和平衡pH值对HCN反萃的影响。结果表明:选用TBP作为萃取剂能够对硫酸铵母液中的HCN进行快速有效的萃取;TBP体积分数、母液初始pH值及相比对HCN萃取率影响显著;以含体积分数35%TBP的有机相作萃取剂,在相比(Vorg∶Vaq)为2∶1的条件下,pH值为2.92的含氰1.71 g/L的硫酸铵母液经3级错流萃取,萃余液中含氰低于0.5 mg/L,氰的萃取率接近100%;在相比(Vaq∶Vorg)为1∶1条件下,以0.6 mol/L的氢氧化钠为反萃液,控制反萃液平衡pH值大于13.0,氰的单级反萃率大于96%;含氰0.78 g/L的有机相在相比为1∶1条件下,经过2级错流反萃,氰基本上被反萃完全,贫有机相不经过处理可循环使用。  相似文献   

15.
提高钛白废酸提钪萃取选择性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究旨在选择合适的助萃剂LH,提高二(2-乙基己基)磷酸(P204)-磷酸三丁酯(TBP)-磺化煤油体系对钛白废酸提钪的选择性,提高钪钛分离系数和钪铁分离系数。研究采用的工艺为二次萃取富集、二次反萃成钪、化学精制提纯钪。通过正交试验确定最佳萃取工艺条件:萃取剂最佳配比V(P204)∶V(TBP)∶V(磺化煤油)=1.3∶0.7∶10,一次萃取相比为V(O)∶V(A)=1∶21,不加助萃剂二次萃取相比为V(O)∶V(A)=1∶5,加助萃剂时其加量为水相体积的1.7%,此时钪钛分离系数达到124 812,钪铁分离系数达到8 202。  相似文献   

16.
溶剂萃取法是盐湖提锂的重要工艺方法。采用磷酸三丁酯(TBP)/1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺盐([C4mim][NTf2])离子液体体系对高镁锂比盐湖卤水中的锂进行萃取分离提取实验,对负载有机相的洗涤和反萃过程进行了研究。萃取实验:在TBP与[C4mim][NTf2]体积比为9∶1、相比(有机相与水相的体积比)为2∶1条件下,锂离子与其他离子的分离系数分别为β(锂/钠)=94.70、β(锂/钾)=148.85、β(锂/镁)=131.81。洗涤实验:系统考察了洗涤剂种类及浓度、相比、洗涤次数等因素对杂质离子洗脱率的影响,结果发现氯化锂和盐酸的混合溶液是从负载有机相中洗涤除去杂质离子的有效洗涤剂。洗涤过程适宜条件:洗涤剂中氯化锂浓度为4 mol/L、盐酸浓度为0.5 mol/L,相比为5∶1,洗涤次数为2次。反萃实验:用稀盐酸(1.0 mol/L)对负载有机相进行反萃取,在相比为1∶1条件下,单级反萃率达到97.81%。研究表明,离子液体体系作为一种新型萃取体系,在高镁锂比盐湖卤水中提取锂具有较好的应用前景。  相似文献   

17.
辛胜  安黛宗 《河北化工》2009,32(11):6-8,20
采用M5640-磺化煤油作为萃取剂,H2SO4为反萃剂,对电镀污泥浸出液中的铜进行选择性萃取实验,确定了萃取铜及反萃的最佳工艺参数。结果表明,实验采用二级萃取,萃取剂浓度为5%,VO/VA=1:1,混合时间为2min时,铜的萃取率可达到9996以上,另外采用已优化的反萃工艺参数,铜的反萃率可达99%以上。同时,萃取剂对Ni、Zn的共萃率较低,表明M5640-磺化煤油体系对电镀污泥液中铜的萃取选择能力较高,可以达到与溶液中Ni、Zn有较好的分离效果。  相似文献   

18.
溶剂萃取法从提锂后盐湖卤水中提硼的工艺研究   总被引:1,自引:0,他引:1  
以青海东台吉乃尔盐湖提锂后卤水为原料,用2-乙基-1,3-己二醇分别与异辛醇、异戊醇组合的混合醇从卤水中萃取硼,从萃取剂体积分数、酸度、相比、萃取时间、萃取温度、饱和萃取容量、反萃剂浓度、反萃时间等方面加以实验,获得了混合醇从卤水中萃取提硼的最佳工艺条件:萃取剂体积分数30% ,水相pH为3,相比1:1,萃取时间10 min,最大饱和容量61.4 g/L(B2O3).并与一元醇进行了比较,得出混合醇的萃取效果远好于一元醇.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号