首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ablation properties and thermal conductivity of carbon nanotube (CNT) and carbon fiber (CF)/phenolic composites were evaluated for different filler types and structures. It was found that the mechanical and thermal properties of phenolic-polymer matrix composites were improved significantly by the addition of carbon materials as reinforcement. The concentrations of CF and CNT reinforcing materials used in this study were 30 vol% and 0.5 wt%, respectively. The thermal conductivity and thermal diffusion of the different composites were observed during ablation testing, using an oxygen–kerosene (1:1) flame torch. The thermal conductivity of CF mat/phenolic composites was higher than that of random CF/phenolic composites. Both CF mat and CNT/phenolic composites exhibited much better thermal conductivity and ablation properties than did neat phenolic resin. The more conductive carbon materials significantly enhanced the heat conduction and dissipation from the flame location, thereby minimizing local thermal damage.  相似文献   

2.
The hybrids of multi-walled carbon nanotube and poly(lactic acid) (MWCNT/PLA) were prepared by a melt-blending method. In order to enhance the compatibility between the PLA and MWCNTs, the surface of the MWCNTs was covalently modified by Jeffamine® polyetheramines by functionalizing MWCNTs with carboxylic groups. Different molecular weights and hydrophilicity of the polyethermaines were grafted onto MWCNTs with the assistance of a dehydrating agent. The results showed that low-molecular-weight Jeffamine® polyetheramine modified MWCNTs can effectively improve the thermal properties of PLA composites. On the other hand, high-molecular-weight and poly(oxyethylene)-segmented polyetheramine could render the modified MWCNTs of well dispersion in PLA, and consequently affecting the improvements of mechanical properties and conductivity of composite materials. With the addition of 3.0 wt% MWCNTs, the increment of E′ of the composite at 40 °C was 79%. For conductivity, the surface resistivity decreased from 1.27 × 1012 Ω/sq for neat PLA to 8.30 × 10−3 Ω/sq for the composites.  相似文献   

3.
A novel class of epoxy matrix hybrid nanocomposites has been developed containing multiwalled carbon nanotubes (MWCNTs) and nanodiamonds (NDs) to explore the combined effect of nanoreinforcements on the mechanical performance of nanocomposites. Both the nanofillers were functionalized before incorporating into epoxy matrix to promote interfacial interactions. The concentrations of both MWCNTs and NDs in the nanocomposites were increased systematically, i.e. 0.05 wt.%, 0.1 wt.% and 0.2 wt.% while composites containing individual nanoreinforcements were also manufactured for comparison. The developed nanocomposites were characterized microstructurally by scanning electron microscopy (SEM) and mechanically by tensile, flexural, impact and hardness tests. Homogeneous dispersion of MWCNTs and NDs was observed under SEM, which resulted in the enhancement of mechanical properties of nanocomposites. The composites containing 0.2 wt.% MWCNTs and 0.2 wt.% NDs showed 50% increase in hardness while tensile strength and modulus enhanced to 70% and 84%, respectively. Flexural strength and modulus also showed a rise of 104% and 56%, respectively. Interestingly, fracture strain also increased in both the tensile and flexural testing. The impact resistance increased to 161% showing a significant improvement in the toughness of hybrid nanocomposites.  相似文献   

4.
《Composites Science and Technology》2007,67(11-12):2564-2573
The precursor of polyimide, polyamic acid, was prepared by reacting 4,4′-oxydianiline (ODA) with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA). Unmodified, acid-modified and amine-modified multiwall carbon nanotubes (MWCNT) were separately added to the polyamic acid and heated to 300 °C to produce polyimide/carbon nanotube composite. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) microphotographs reveal that acid-modified MWCNT and amine-modified MWCNT were dispersed uniformly in the polyimide matrix. The effect of the acid and amine-modified MWCNTs on the surface and volume electrical resistivities of MWCNT/polyimide composites were investigated . The surface electrical resistivity of the nanocomposites decreased from 1.28 × 1015 Ω/cm2 (neat polyimide) to 7.59 × 106 Ω/cm2 (6.98 wt% unmodified MWCNT content). Adding MWCNTs influenced the glass transition temperatures of the nanocomposites. Modified MWCNTs significance enhanced the mechanical properties of the nanocomposites. The tensile strength of the MWCNT/polyimide composite was increased from 102 MPa (neat polyimide) 134 MPa (6.98 wt% acid modified MWCNT/polyimide composites).  相似文献   

5.
This study uses a melt extrusion method, a method for producing wires, to coat polyester (PET) yarns with polypropylene (PP) and multi-walled carbon nanotubes (MWCNTs). The resulting PP/MWCNTs-coated PET conductive yarns are tested for their tensile properties, processability, morphology, melting and crystallization behaviors, electrical conductivity, and applications. The test results indicate that tensile strength of the conductive yarns increases with an increase in the coiling speed that contributes to a more single-direction-orientated MWCNTs arrangement as well as a greater adhesion between PP/MWCNTs and PET yarns. 8 wt% MWCNTs results in an 18 °C higher crystallization temperature (Tc) of PP and an electrical conductivity of 0.8862 S/cm. The test results of this study have proven that this form of processing technology can prepare PP/MWCNTs-coated PET conductive yarns that have satisfactory tensile properties and electrical conductivity, and can be used in functional woven fabrics and knitted fabrics.  相似文献   

6.
In this investigation, Polyetherimide (PEI) reinforced with multi-walled carbon nanotube (MWCNT) using novel melt blending technique. Surface of MWCNTs are modified by acid treatment as well as by plasma treatment. PEI nano composites with 2 wt% treated MWCNT shows about 15% improvement in mechanical properties when compared to unfilled PEI. The thermal decomposition kinetics of PEI/MWCNT nano composites has been critically analyzed by using Coats – Redfern model. The increase in activation energy for thermal degradation by 699 kJ/mol for 2 wt% MWCNT implies improvement in the thermal properties of PEI. Studies under Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM) depict significant interfacial adhesion with uniform dispersion of MWCNT in polymer matrix due to surface functionalization. 0.5 wt% chemically modified MWCNT shows typical alignment of MWCNT. There is a significant improvement in mechanical properties and thermal properties for surface functionalized MWCNT reinforced.  相似文献   

7.
Mechanical properties of aligned long harakeke fibre reinforced epoxy with different fibre contents were evaluated. Addition of fibre was found to enhance tensile properties of epoxy; tensile strength and Young’s modulus increased with increasing content of harakeke fibre up to 223 MPa at a fibre content of 55 wt% and 17 GPa at a fibre content of 63 wt%, respectively. The flexural strength and flexural modulus increased to a maximum of 223 MPa and 14 GPa, respectively, as the fibre content increased up to 49 wt% with no further increase with increased fibre content. The Rule of Mixtures based model for estimating tensile strength of aligned long fibre composites was also developed assuming composite failure occurred as a consequence of the fracture of the lowest failure strain fibres taking account porosity of composites. The model was shown to have good accuracy for predicting the strength of aligned long natural fibre composites.  相似文献   

8.
Two types of multi-walled carbon nanotubes (MWCNTs) functionalized with different amino-organics, dicyanodiamide and phenylbiguanide, respectively, were achieved in this paper. The physico-chemical properties of MWCNTs before and after amino group modification were characterized by thermogravimetric analysis (TGA), Raman spectroscopy and inverse gas chromatography (IGC). The results showed that amino-functionalization changed evidently the surface properties of MWCNTs, such as the dispersive surface energy (decreased from 122.95 mJ/m2 to 18.65 mJ/m2 and 25.69 mJ/m2, respectively) and specific surface energy (decreased from 8.84 mJ/m2 to 0.56 mJ/m2 and 4.60 mJ/m2, respectively) for two functionalized MWCNTs. And then, the interfacial adhesion states of the functionalized MWCNTs/epoxy nanocomposites were investigated using scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). The results also indicated that the dispersion of MWCNTs in epoxy resin and the interfacial adhesion of MWCNTs/epoxy nanocomposites were both strongly dependent on the surface physico-chemical properties of functionalized MWCNTs, and the effect of MWCNTs functionalized by phenylbiguanide with slightly higher polarity was better.  相似文献   

9.
Nanocomposites based on epoxy resin and different weight percentages of unmodified, oxidized, and silanized multi-walled carbon nanotubes (MWCNTs) were prepared by cast molding method. Effects of MWCNTs content on the flexural properties were examined. The results showed that as the loading of the MWCNTs increased, improved flexural strength and flexural modulus were observed. The mechanical properties decreased when the MWCNTs content exceeded 0.2 wt.% due to agglomeration of MWCNTs. These results prove the effect of functionalization on the interfacial adhesion between epoxy and MWCNTs. This was further confirmed by morphology study of fractured surfaces of nanocomposites by SEM and TEM.  相似文献   

10.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

11.
Highly ablation resistant carbon nanotube (CNT)/phenolic composites were fabricated by the addition of low concentrations of CNTs. Tensile and compressive mechanical properties as well as ablation resistance were significantly improved by the addition of only 0.1 and 0.3 wt% of uniformly dispersed CNTs. An oxygen–kerosene-flame torch and a scanning electron microscope (SEM) were used to evaluate the ablative properties and microstructures. Thermal gravimetric analysis (TGA) revealed that the ablation rate was lower for the 0.3 wt% CNT/phenolic composites than for neat phenolic or the composite with 0.1 wt% CNTs. Ablation mechanisms for all three materials were investigated using TGA in conjunction with microstructural studies using a SEM. The microstructural studies revealed that CNTs acted as an ablation resistant phase at high temperatures, and that the uniformity of the CNT dispersion played an important role in this ablation resistance.  相似文献   

12.
Isotactic polypropylene (PP) nanocomposites with multi-walled carbon nanotubes (MWCNTs) of various diameters (10–50 nm) were fabricated by extrusion and compression-molding techniques and characterized by X-ray diffraction measurements, differential scanning calorimetry, scanning electron microscopy, mechanical test and differential thermal analyses. The pure PP exhibits both the a- and b-axes oriented α-crystal, whereas the MWCNTs induce the b-axis orientation of the α-crystal along with the formation of minor γ-phase crystal in nanocomposites. Crystallinity, long period of lamellae, tensile strength, tensile modulus (TM) and microhardness (H) of PP considerably change by different loading and sizes of MWCNTs. The estimated values H/TM = 0.09–0.10 for all samples approach the predicted value of 0.10 for polymers. The increase in crystallinity has been demonstrated by both XRD and DSC studies. Mathematical models have been invoked to explain the changes in mechanical properties. An increase in thermal stability of polymer matrix occurs with increasing MWCNTs size and loading.  相似文献   

13.
PLA/hemp co-wrapped hybrid yarns were produced by wrapping PLA filaments around a core composed of a 400 twists/m and 25 tex hemp yarn (Cannabis sativa L) and 18 tex PLA filaments. The hemp content varied between 10 and 45 mass%, and the PLA wrapping density around the core was 150 and 250 turns/m. Composites were fabricated by compression moulding of 0/90 bidirectional prepregs, and characterised regarding porosity, mechanical strength and thermal properties by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). Mechanical tests showed that the tensile and flexural strengths of the composites markedly increased with the fibre content, reaching 59.3 and 124.2 MPa when reinforced with 45 mass% fibre, which is approximately 2 and 3.3 times higher compared to neat PLA. Impact strength of the composites decreased initially up to 10 mass% fibre; while higher fibre loading (up to 45 mass%) caused an increase in impact strength up to 26.3 kJ/m2, an improvement of about 2 times higher compared to neat PLA. The composites made from the hybrid yarn with a wrapping density of 250 turns/m showed improvements in mechanical properties, due to the lower porosity. The fractured surfaces were investigated by scanning electron microscopy to study the fibre/matrix interface.  相似文献   

14.
A novel polypropylene (PP) nanocomposite was fabricated by the incorporation of intumescent flame retardant (IFR), carbon nanotubes (CNTs) and graphene into the PP matrix. Results from TEM indicate that IFR, CNTs and exfoliated graphene nanosheets are dispersed finely in the PP matrix, which is supported by the XRD analysis results. Thermogravimetric (TGA) results show that the addition of IFR, CNTs and graphene improved the thermal stability and the char yields of PP. The PP/IFR/CNTs/RGO nanocomposites, filled with 18 wt% IFR, 1 wt% CNTs and 1 wt% graphene, achieve the limiting oxygen index value of 31.4% and UL-94 V0 grade. Cone calorimeter data reveal that combustion behavior, heat release rate peak (PHRR) and average specific extinction area (ASEA) of PP decrease substantially when combination effects of IFR, CNTs and graphene intervene. For the PP/IFR/CNTs/RGO nanocomposites, the PHRR exhibits an 83% reduction and the time of ignition is delayed 40 s compared with neat PP.  相似文献   

15.
This study aims to investigate experimentally the effects of aspect ratio (length/diameter ratio) and concentration of multiwalled carbon nanotubes (MWCNTs) on thermal properties of high density polyethylene (HDPE) based composites. The aspect ratios of two types of MWCNT fillers are in the range of 200–400 and 500–3000. Composite samples were prepared by melt mixing up to weight fraction of 19% filler content, followed by a compression molding. Measurements of density, specific heat and thermal diffusivity (by modulated photothermal radiometry, PTR) were performed and effective thermal conductivities ke of nanocomposites were calculated using these values. The results show that the composites containing MWCNTs with higher aspect ratio have higher thermal conductivities than the ones with lower aspect ratio. In terms of conductivity enhancement ke/km  1, the results indicate that MWCNTs with higher aspect ratio provide three to fourfold larger enhancement than the ones with lower aspect ratio, at low filler concentrations.  相似文献   

16.
The effect of adding graphene in epoxy containing either an additive (MP) or reactive-type (DOPO) flame retardant on the thermal, mechanical and flammability properties of glass fiber-reinforced epoxy composites was investigated using thermal analysis; flexural, impact, tensile tests; cone calorimetry and UL-94 techniques. The addition of MP or DOPO to epoxy had a thermal destabilization effect below 400 °C, but led to higher char yield at higher temperatures. The inclusion of 10 wt% flame retardants slightly decreased the mechanical behavior, which was attributed to the poor interfacial interactions in case of MP or the decreased cross-linking density in case of DOPO flame retarded resin. The additional graphene presence increased flexural and impact properties, but slightly decreased tensile performance. Adding graphene further decreased the PHRR, THR and burning rate due to its good barrier effect. The improved fire retardancy was mainly attributed to the reduced release of the combustible gas products.  相似文献   

17.
This paper studies the effects of multi-walled carbon nanotubes (MWCNTs) on the thermal residual stresses in polymeric fibrous composites. Reinforced ML-506 epoxy nanocomposites with different amounts of homogeneously dispersed MWCNTs (0.1 wt.%, 0.5 wt.% and 1 wt.%) were fabricated using the sonication technique. Thermo-mechanical analysis and tensile tests of the specimens were carried out to characterize the thermal and mechanical properties of MWCNTs/epoxy composites. Due to the negative thermal expansion and high modulus of MWCNTs, addition of MWCNTs resulted in a great reduction of the coefficient of thermal expansion (CTE) of epoxy. The MWCNTs also moderately increased the Young’s modulus of the epoxy. Then, the effects of adding MWCNTs on micro and macro-residual stresses in carbon fiber (CF)/epoxy laminated composites were investigated using the energy method and the classical lamination theory (CLT), respectively. The results indicated that the addition of low amounts of MWCNTs leads to a considerable reduction in thermal residual stress components in both micro and macro levels.  相似文献   

18.
Magnetically-sensitive polyurethane composites, which were crosslinked with multi-walled carbon nanotubes (MWCNTs) and were filled with Fe3O4 nanoparticles, were synthesized via in situ polymerization method. MWCNTs pretreated with nitric acid were used as crosslinking agents. Because of the crosslinking of MWCNTs with polyurethane prepolymer, the properties of the composites with a high content of Fe3O4 nanoparticles, especially the mechanical properties, were significantly improved. The composites showed excellent shape memory properties in both 45 °C hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m−1). The shape recovery time was less than one minute and the shape recovery rate was over 95% in the alternating magnetic field.  相似文献   

19.
Epoxy resin modified with nanofillers cannot be used alone for high performance structural applications due to their low-mechanical properties. Therefore, the objective of this work is to hybridize unidirectional and quasi-isotropic glass fiber composite laminates with 1.0 wt% multi-walled carbon nanotubes (MWCNTs). Results from flexural and damping characterizations showed that the flexural strength and modulus, storage modulus, and damping ratio of MWCNT/E nanocomposite are improved by about 7% ± 1.5% compared to neat epoxy. The enhancement in the flexural strength of quasi-isotropic laminate (20.7%) is about ten times higher than that for unidirectional laminate (2.1%). The flexural moduli of the nano-hybridized laminates are reduced by about 7.5–10.8%. Accordingly, the ultimate failure strain and damping properties are evidently improved. The improvement in damping ratio in some cases is about 100%. The high correlation coefficient (0.9995) between flexural and storage moduli suggests using the dynamic nondestructive tests for evaluation the elastic properties of composites.  相似文献   

20.
Uniform treatment of multiwalled carbon nanotubes by plasma treatment has been investigated using a custom-built stirring plasma system. A thin plasma polymer with high levels of amine groups has been deposited on MWCNTs using a combination of continuous wave and pulsed plasma polymerization of heptylamine in the stirring plasma system. Scanning electron microscopy showed that the plasma polymerization improved the dispersion and interfacial bonding of the MWCNTs with an epoxy resin at loadings of 0.1, 0.3 and 0.5 wt%. The flexural and thermal mechanical properties of plasma polymerized MWCNT/epoxy nanocomposites were also significantly improved while untreated MWCNT/epoxy nanocomposites showed an opposite trend. The epoxy with 0.5 wt% plasma polymerized MWCNTs had the greatest increase in flexural properties, with the flexural modulus, flexural strength and toughness increasing by about 22%, 17% and 70%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号