首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
氢氧化镁包覆红磷阻燃玻纤增强PA66的性能研究   总被引:1,自引:0,他引:1  
制备了氢氧化镁[Mg(OH)2]包覆红磷(Mg-en-P),并将其应用于玻纤(GF)增强PA66的阻燃。当Mg-en-P用量为30份时,其阻燃PA66/GF(质量比100/35)材料可达V-0级,氧指数(LOI)为36.5%,其值比商品化红磷母粒(Com-en-P)阻燃PA66/GF高出7.5%,且燃烧时间较短。Mg-en-P阻燃PA66/GF材料的弯曲强度及耐漏电起痕指数(CTI)值均高于Com-en-P阻燃PA66/GF材料,而冲击强度略有降低。Mg-en-P阻燃PA66/GF材料在较低温度下失重,表明Mg(OH)2分解生成的水有助于红磷生成强脱水的聚偏磷酸,起到阻燃作用。  相似文献   

2.
针对黑色母中炭黑难分散、影响力学性能的问题,采用双螺杆挤出机和注塑机制备了聚酰胺(PA)增强复合材料,探讨了黑色母种类及含量对PA6/GF30体系、PA66/GF30体系、PA66/GF30溴系阻燃体系、PA66/GF30无卤阻燃体系性能的影响。结果表明,尼龙增强产品中,添加1%的TA-5003后PA6/GF30和PA66/GF30的拉伸强度、弯曲强度会略微下降,冲击强度会下降5%左右。随着质量分数增加至2%,强度进一步下降。同等比例下,纳米黑色母TA-5003对PA6/GF30和PA66/GF30的负面影响小于黑色母2014和2718。TA-5003的黑度、蓝相、熔体流动速率、表观浮纤和光泽度优于黑母粒2014和2718。在PA66/GF30溴系增强阻燃材料中,2014的缺口冲击强度略高于TA-5003,TA-5003的黑度略差于黑母粒2014。添加质量分数2%的TA-5003和2%的2014后,阻燃材料可保持阻燃等级为UL 94V-0级,灼热丝可保持960℃。相对于本色阻燃料,添加黑色母后相对漏电起痕指数(CTI)会下降25~50 V。相对于2014,TA-5003对CTI的影响较...  相似文献   

3.
高灼热丝温度环保型阻燃增强PA66的研制   总被引:2,自引:1,他引:1  
采用自制的新型绿色环保型阻燃复配体系制得了高灼热丝温度环保型阻燃增强聚酰胺(PA)66。结果表明,多元复合型阻燃剂/三氧化二锑阻燃体系可以使PA66/玻璃纤维(GF)的灼热丝温度大幅提高。当多元复合型阻燃剂、三氧化二锑、增韧剂的质量分数分别为14%、4%、5%时,材料的综合性能最佳,此时灼热丝温度为860℃,缺口冲击强度为7.2 kJ/m2,阻燃等级为UL94 V-0级。所研制的阻燃PA66/GF已成功应用于接触器、断路器外壳,电机碳刷架等的制备。  相似文献   

4.
无卤阻燃增强PA66的研制及其在断路器外壳中的应用   总被引:4,自引:3,他引:1  
采用红磷母粒阻燃玻璃纤维增强聚酰胺66(PA66),并添加适当的添加剂,制备了无卤阻燃增强PA66;考察了阻燃剂、增容剂及其它助剂对材料性能的影响。结果表明,该材料具有较高的力学性能、电绝缘性能和阻燃性能;用该材料制备的断路器外壳具有较好的阻燃性能及电绝缘性能,产品质量得到了客户认可。  相似文献   

5.
从磷-氮系阻燃剂、阻燃剂类型、协效阻燃剂三个方面制备和研究了高冲击强度、高阻燃性能的玻纤增强阻燃尼龙6(PA6)复合材料。结果表明:三种方法都可以达到阻燃V-0;在溴-锑阻燃基础上,添加磷-氮系阻燃剂,可以提高玻纤增强阻燃PA6的阻燃性,但是会降低力学性能;红磷阻燃制备的复合材料的冲击性能最好;溴-锑阻燃制备的复合材料的拉伸强度和弯曲强度最高,冲击性能最低;有机次膦酸盐制备的复合材料的拉伸强度和弯曲强度最低,冲击性能适中;协效阻燃剂可以降低溴-锑的含量,降低材料成本,阻燃性能保持不变,拉伸强度和弯曲强度略有下降,冲击性能略有上升。得出如下结论:红磷阻燃剂质量分数是6%,以及F2400∶三氧化二锑∶协效阻燃剂质量分数比=17∶5∶2时,玻纤增强阻燃尼龙6复合材料的冲击性能最好,阻燃性达到UL94(1.6 mm)V-0。  相似文献   

6.
以二乙基次磷酸铝(ALPi)为阻燃剂,炭黑(CB)为抗静电剂,自制的乙烯-醋酸乙烯共聚物(EVA)母粒为增韧剂,聚酰胺6(PA6)为基体,通过熔融共混制备了无卤阻燃和永久抗静电PA6复合材料。研究了上述助剂对复合材料阻燃性能、抗静电性能及热降解动力学的影响。结果表明:当阻燃剂为15份时复合材料的氧指数达到31%;加入增韧剂EVA和CB后复合材料的电阻值下降8个数量级,EVA的加入有利于CB在复合材料中形成导电通路;阻燃剂的加入使材料的热降解过程减缓。  相似文献   

7.
简述了对尼龙66(PA66)进行阻燃的基本途径,详细阐述了适用于PA66的各类阻燃体系,如卤系阻燃剂、磷系阻燃剂、氮系阻燃剂及无机填料型阻燃剂等对PA66的阻燃效果及研究现状,并展望了阻燃PA66的发展趋势。指出无卤阻燃剂和环境友好型阻燃剂是未来阻燃PA66的重点发展方向,通过包覆、微胶囊化、母粒化等技术手段开发高效阻燃剂以及阻燃剂复配技术的应用也是今后的研究重点。  相似文献   

8.
以三聚氰胺甲醛树脂为囊材,红磷为芯材,过硫酸铵为催化剂,制备了具有核壳结构的微胶囊红磷(MRP),同时复配三氧化二锑(Sb_2O_3)、聚溴苯和玻璃纤维(GF),采用熔融挤出法制备了不同配方的聚酰胺6(PA6)复合材料,研究了复合材料的力学性能与阻燃性能。结果表明:当分散剂聚乙二醇400质量分数为2%,反应3 h时,MRP自燃温度达到469℃;阻燃剂总量相同时,在GF增强PA6基体中同时加入MRP、助阻燃剂(Sb_2O_3或聚溴苯),得到的复合材料比单独加入MRP具有更好的阻燃性能;且当PA6∶MRP∶Sb_2O_3∶GF为100∶15∶5∶30时,PA6复合材料的极限氧指数为29.4%,垂直燃烧等级达到V-0级,冲击强度达到最佳值2.95 kJ/m~2。  相似文献   

9.
以尼龙6/玻璃纤维(PA6/GF)为基体材料,加入抗静电剂、无卤阻燃剂二乙基次膦酸铝(ADP)制备了矿用PA6/GF复合材料,考察了复合材料的抗静电性能和阻燃性能,以及ADP加入对复合材料抗静电性能、力学性能和热稳定性能的影响。结果表明,抗静电剂163及抗静电剂190的加入能提高PA6/GF复合材料的抗静电性能,当两者复配使用且质量比为1∶2时,材料表面电阻率降低至9.7×107Ω;阻燃剂ADP的加入能提高抗静电PA6/GF复合材料的阻燃性能,当阻燃剂质量分数达到15%时,复合材料阻燃等级达到UL94 V–0级;此外,无卤阻燃抗静电PA6/GF复合材料的综合性能优异,复合材料的抗静电性能、力学性能以及热稳定性能均能保持较好水平。  相似文献   

10.
为提高三聚氰胺聚磷酸盐(MPP)和二乙基次膦酸盐(OP)协效阻燃玻纤(GF)增强尼龙66(PA66)的综合性能,引入少量的无机阻燃剂硼酸锌(ZB)作为协效剂,系统研究了不同添加量的ZB对阻燃材料的阻燃性能、热稳定性、力学性能和白度的影响。结果表明,当MPP和OP的总添加量为15%,复配0.5%的ZB时,阻燃GF增强PA66的垂直燃烧阻燃等级达到UL94 V–0级,且热释放总量由MPP/OP体系的15.4 k J/g降为13.7 k J/g;ZB的引入促进了连续、致密炭层的形成,增强了凝聚相阻燃;ZB增强了阻燃材料的热稳定性,ZB复配量为1.0%的阻燃材料的初始降解温度提高到了301℃,有效避免了加工过程中的降解;当ZB添加量为1.0%时,阻燃材料的拉伸强度和缺口冲击强度分别为100.9 MPa和4.22 k J/m~2,均优于未添加阻燃剂的纯GF增强PA66;同时,样品的白度得到了明显提升,有利于阻燃GF增强PA66的工业化应用。  相似文献   

11.
采用熔融指数为10的EBA和PA6作为阻燃剂粉末的包覆载体,研究了以EBA,PA6为载体的FR-NP阻燃母粒的制备,讨论了用量、加工温度等因素对包覆效果的影响。研究表明:EBA的质量分数为20%或PA6的质量分数为25%时,能制备性能良好的FR-NP阻燃母粒。  相似文献   

12.
阻燃玻纤增强尼龙66的研制及其应用   总被引:3,自引:3,他引:0  
研究红磷阻燃母粒对玻纤增强尼龙66(PA66)阻燃性能的影响。结果表明,当红磷阻燃母粒的用量为14份时,玻纤增强PA66的阻燃等级可达到FV-0级;当红磷阻燃母粒的用量为12份并加入9份增容剂及少量氢氧化铝和氢氧化镁时,玻纤增强PA66具有较优异的综合性能,用该材料制作的空调继电器外壳和底板取得较好的使用效果。  相似文献   

13.
采用氮磷型阻燃剂三聚氰胺聚磷酸盐(MPP)与硼改性酚醛树脂(BPF)组成的复合阻燃体系对玻纤(GF)增强尼龙66( PA66)复合材料进行阻燃,获得了阻燃性能优异、力学性能良好的增强复合材料,研究了协效阻燃剂BPF/MPP配比、BPF/MPP用量及GF用量对阻燃复合材料阻燃性能的影响,采用微型燃烧量热和质量保持率分析方法研究了阻燃复合材料的燃烧及成炭行为,对复合阻燃剂的协效机理进行了讨论.结果表明,当BPF在BPF/MPP中的质量分数为15%时,添加25% BPF/MPP复合阻燃剂可使20% GF增强PA66复合材料达到V-0( 1.6 mm)阻燃级别,极限氧指数增加至25.3%,拉伸强度、弯曲强度、缺口冲击强度分别为116 MPa,132 MPa,7.1 kJ/m2.该复合材料可满足高性能无卤阻燃的使用要求.  相似文献   

14.
针对三聚氰胺氰尿酸盐(MCA)粉体对尼龙(PA)进行阻燃改性时,MCA分散性差,材料阻燃性能不稳定的问题,运用特殊的包覆工艺成功制得了PA基MCA母粒。将制得的MCA母粒及MCA粉体分别与PA6或PA66共混挤出,制得阻燃PA材料。对比分析了MCA母粒及MCA粉体阻燃PA6或PA66的垂直燃烧性能和力学性能。结果表明,与MCA粉体相比,MCA母粒可在MCA含量较低的情况下使厚度为0.8 mm及1.6 mm的阻燃PA6或PA66试样的垂直燃烧等级达到V–0级。MCA母粒及粉体对阻燃PA6的弯曲强度和PA66的拉伸强度影响很小,MCA母粒阻燃PA6的拉伸强度较粉体阻燃的高,而阻燃PA66的弯曲强度低;MCA母粒使阻燃PA的缺口冲击强度降低,而MCA粉体对PA的缺口冲击强度影响较小,当MCA含量较低时,MCA母粒阻燃PA的缺口冲击强度明显高于MCA粉体阻燃的PA。制备的MCA阻燃母粒对PA的阻燃效果不受黑色母料的影响,且具有较好的阻燃稳定性。  相似文献   

15.
无卤阻燃增强PA66的研制及其应用   总被引:3,自引:1,他引:2  
以包覆红磷和三聚氰胺氰尿酸(MCA)作为协效阻燃剂,玻璃纤维作为增强体系,加入增容剂和其它添加剂,制备了一种无卤阻燃增强尼龙(PA)66材料.从阻燃性能、热性能、力学性能等方面表征两种阻燃剂的协效作用;探讨了增容剂的加入对复合体系性能的影响.结果表明,当PA66增强料、包覆红磷、MCA、增容剂的质量比为100∶15∶5∶6时,复合材料具有较好的阻燃性能和力学性能.该材料已广泛应用于电子、电器领域.  相似文献   

16.
以多聚芳基磷酸酯和硼酸锌作为阻燃剂制备无卤阻燃聚苯醚(PPE)/尼龙66 (PA66)合金材料。分别讨论了PPE/PA66配比、阻燃剂多聚芳基磷酸酯用量及增容剂马来酸酐接枝聚苯醚(PPE-g-MAH)和增韧剂马来酸酐接枝苯乙烯–乙烯/丁烯–苯乙烯嵌段共聚物(SEBS-g-MAH)用量对PPE/PA66合金体系力学、耐热性能和阻燃性能的影响,并通过扫描电子显微镜观察了增容剂对合金表面形貌的影响。结果表明,PPE/PA66最佳配比为1/1 (质量比),阻燃剂的加入会影响合金材料的力学性能和耐热性,添加多聚芳基磷酸酯和硼酸锌的最优质量分数分别为15%和2%;PPE-g-MAH的加入有效改善了PPE与PA66之间的相容性,但添加量不宜过大,以质量分数6%为宜;SEBS-g-MAH可以有效改善合金的韧性,但会降低合金的阻燃性能,以质量分数5%为宜;最终制备的阻燃PPE/PA66合金材料的阻燃性能可达到V–0级(1.6mm),热变形温度达95.2℃,拉伸强度为61.9MPa,缺口冲击强度为108.4J/m。  相似文献   

17.
利用碳纤维导电性、高模量、高强度特点,配合阻燃剂改性PA6树脂,制备碳纤维/PA6复合材料。并将材料应用于煤矿井下用通风叶轮制品,以检验材料实际使用效果,开拓碳纤维应用范围。结果表明,在碳纤维质量分数20%下,配合溴系阻燃剂体系作用,复合材料具有较高的强度、高导电性和阻燃性能,能满足井下聚合物制品安全及使用性能要求。  相似文献   

18.
制备了阻燃低气味的增强尼龙。分析了玻纤加入、尼龙类型和尼龙处理方式对尼龙力学性能的影响;并研究了阻燃剂种类和用量对玻纤增强尼龙性能的影响,最后研究了除味剂种类和用量对玻纤增强尼龙性能的影响。结果表明:短纤增强PA66具有较高的刚性和韧性;PA66经烘烤后所得玻纤增强PA66的刚性较高,而PA66不经烘烤所得玻纤增强PA66的韧性较高;红磷对玻纤增强的PA66阻燃效果好,且不对其力学性能产生影响;随着红磷阻燃母粒用量的增加,玻纤增强PA66的阻燃性能先变好后变差,在红磷用量为21份时达到最佳;凹凸棒石和红磷对玻纤增强PA66有优异的协同阻燃作用,当凹凸棒石用量为在4份时,达到最佳。SW-120和尼龙塑料除味剂同时使用,对玻纤增强PA66的气味有显著的改善。  相似文献   

19.
HIPS的阻燃及增韧研究   总被引:2,自引:0,他引:2  
用纳米改性氢氧化铝(CG-ATH)和红磷母粒对高抗冲聚苯乙烯(HIPS)进行协同阻燃,用(苯乙烯/丁二烯/苯乙烯)共聚物(SBS)对所得的阻燃HIPS进行增韧,研究了阻燃剂和增韧剂对复合材料力学性能和阻燃性能的影响。结果表明,CG-ATH与红磷母粒之间有很好的协同阻燃作用,当CG-ATH用量为20%、红磷母粒用量为12%时,HIPS的垂直燃烧等级达到FV-0级,但CG-ATH和红磷母粒的加入使复合材料的冲击强度大幅度降低;SBS用量为15%时,可以使复合材料的冲击强度提高1倍左右,并且不影响复合材料的阻燃性能。  相似文献   

20.
使用双螺杆挤出机,采用共混改性方法制备玻璃纤维(GF)增强尼龙66(PA 66)复合材料(GF-PA 66),并对其结构、热性能和力学性能进行了表征。结果表明:制备的GF质量分数分别为20%,25%,30%的GF-PA 66复合材料的密度均低于1.4 g/cm~3,GF在GF-PA 66复合材料体系中呈现纤维交错复杂的网络结构;GF-PA 66复合材料的起始热降解温度均在320℃以上,具有较好的耐热性;随着GF含量的增加,GF-PA 66复合材料的拉伸强度、弯曲强度、弯曲模量升高,当GF质量分数达到30%时,复合材料的拉伸强度为147.4 MPa,比纯PA 66提高了75%,弯曲强度达到202 MPa,比纯PA 66提高了112%,弯曲模量达到7 783.3 MPa,比纯PA 66提高了175%;随着GF含量的增加,GF-PA 66复合材料的悬臂梁冲击强度先降低后升高,当GF质量分数为30%时,复合材料的悬臂梁冲击强度高于纯PA 66。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号