首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
纤维素废弃物稀酸水解残渣制氢研究   总被引:1,自引:0,他引:1  
李文志  颜涌捷  任铮伟  黄秒 《太阳能学报》2007,28(11):1248-1252
对纤维素废弃物水解残渣催化气化制氢进行了研究,考察了气化温度、催化温度、催化剂颗粒粒径和S/B (单位时间内进入气化器中水蒸汽质量与生物质质量之比)4个主要参数对气体组成和氢气产率的影响并和以木屑为原料催化气化制氢进行了比较。在试验范围内提高气化温度、催化温度和S/B的值以及减小催化剂颗粒粒径对提高氢产率有利,其中气化温度和S/B对提高氢产率影响较大。气化温度在800~850℃内较为理想,催化剂颗粒的适宜粒径为2~3mm,S/B取1.5~2.0较佳;和木屑制氢相比,使用水解残渣制取的气体中CO和CO_2的体积百分比小,H_2/CO的值大,氢气含量高,有利于后续处理,且氢产率大,对制氢有利。  相似文献   

2.
为提高石油焦气化产氢率与产甲烷率,基于Aspen plus软件建立石油焦-水蒸气气化模型,并引入氧化钙添加剂,研究气化温度、压力、CaO/石油焦质量比、H_2O/石油焦质量比对石油焦气化制取富氢气体与富甲烷气体的影响。结果表明,将氧化钙引入石油焦气化系统可以有效提高氢气和甲烷的体积分数,当CaO/石油焦质量比为3时氢气的体积分数可提高20个百分点,当CaO/石油焦质量比为1时甲烷的体积分数可提高15个百分点;增大水蒸气流量有利于制备富氢气体,而不利于制备富甲烷气体,石油焦气化制取甲烷的水蒸气最佳添加量为H_2O/石油焦质量比为1,制取氢气的水蒸气最佳添加量为H_2O/石油焦质量比为10;低温低压有利于制备富氢气体,石油焦-CaO气化制氢的最适宜温度为600~650℃,最适宜压力为0.1MPa;低温高压有利于制备富甲烷气体,石油焦-CaO气化制甲烷的最适宜温度为600~750℃,最适宜压力为1MPa。  相似文献   

3.
基于下吸式固定床气化炉,自建了生物质蒸汽气化实验平台,使用松木屑预处理后的成型颗粒进行富氢气化实验,研究分析了不同温度下的燃气组分、产氢率、燃气产率、燃气热值和冷煤气效率等指标.结果表明:高温水蒸气能有效促进水蒸气重整反应正向进行;随着温度的升高(700℃升高至900℃),H_2体积分数增大了50%,产氢率升高了2.5倍,燃气产率升高了近70%,冷煤气效率提高了37%;参与气化反应的高温水蒸气拥有较高的比焓,能够有效促进水蒸气重整反应向生成H_2的方向进行;气化温度的升高可以促进反应向正向进行,提高气体产物产量;以松木屑为例的林产废弃物高温水蒸气气化产气优良,在实验过程中稳定燃烧,理论上可应用于工业生产.  相似文献   

4.
利用管式炉在800~1 200℃的温度下对麦草、稻草和元宝煤进行高温热解,并通过红外光谱分析仪和氢气分析仪对析出气体的成分进行测量,研究结果表明:麦草和稻草的NH_3,HCN,H_2和主要烷烃气体的析出曲线均呈现为单峰状,其中,H_2最晚析出且析出时间最长;随着热解温度的升高,麦草和稻草的NH_3,CH_4和C_2H_4析出量均逐渐减小,H_2析出量逐渐增大且增速快于元宝煤,当热解温度约为1 100℃时,麦草和稻草的HCN析出量均达到最大值;当热解温度约为1 010℃时,稻草的C_2H_2和C_6H_6析出量最大,而麦草的C_2H_2和C_6H_6最大析出量对应的热解温度分别约为1 030,1 060℃;麦草和稻草析出气体的碳元素质量分数均随着热解温度的升高而逐渐减小,氢元素质量分数在热解温度为1 000℃时最小,氮元素质量分数在热解温度为900℃时最大,麦草析出气体的氧元素质量分数随着热解温度的升高而逐渐增大,而稻草析出气体的氧元素质量分数在热解温度为1 000℃时最大。  相似文献   

5.
生物质二次裂解制取氢气的研究   总被引:3,自引:0,他引:3  
采用生物质热解及二次裂解的方法制取富氢气体.通过对生物质热解产生的气液体成份进行二次裂解,实现热解组分中焦油等含氢化合物的深度转化,提高产品气体中氢气的含量,同时解决了热解产品气中焦油不易去除的难题,得到洁净的富氢气体.实验选用稻壳为原料,分析了热解温度和物料滞留时间等因素对热解气体成份的影响,比较了热解气体和二次裂解气体成份的变化,同时分析了水蒸汽、催化剂等因素对裂解气体成份的影响.实验结果表明,热解温度和物料滞留时间的增加提高了热解气体中氢气的含量,二次裂解、水蒸汽和催化剂的引入都能在一定程度上提高产品气中H2的含量.实验最终表明,氢气体积含量可达到60%以上.  相似文献   

6.
随着对燃油清洁性要求的不断提高,炼油厂对氢气的需求不断增加,含氢尾气量随之增加,回收炼油厂尾气中的氢气是降低炼油厂制氢成本的重要措施之一。通过对大连石化公司氢网运行现状、12套加氢装置用氢需求和产氢装置情况,氢网压力等级及氢气平衡,膜分离气体分离的工艺原理,以及该公司新建的变压吸附+膜分离耦合气体分离工艺及具体的工艺流程进行介绍,对富氢气体回收装置投用和标定情况,以及投用后对氢网的影响进行了分析。富氢气体回收装置投用后,燃料气中的氢气含量从30%~90%大幅下降到15%~30%,有利于加热炉稳定运行。PSA解析气由进入燃料气或者作为制氢原料改为进入富氢回收装置,提高了氢气回收率。停用了一套制氢装置,每年可节约液化气13×10~4t,大幅降低了制氢成本。改善了PSA单元的操作条件,延长了吸附剂使用寿命。对富氢气体回收装置投用后出现的氢气产品中的CO_2含量升高、富氢气体回收装置适合的进料类型、原料切液等问题进行了探讨。  相似文献   

7.
文章采用共沉淀方法合成了不同配比的Ni O/Al2O3催化剂,采用固定床反应器研究了不同配比的催化剂对甘油水蒸气重整制氢的影响。通过气体产品含量、甘油及水蒸气转化率等指标的分析得出:甘油和水蒸气转化率及氢气产率在450~650℃时随温度升高而增加,其中Ni O/Al2O3(Ni O=27.43%,Al2O3=72.57%)催化剂由于Ni含量较高,表现出高制氢催化活性,其氢气产率在650℃时达到最高的12.7%,甘油转化率也达到最高值96.9%。进行CO2原位吸附的甘油重整吸附强化制氢时,得到了更高纯度的氢。进行多次循环再生实验时,随着循环次数的增多,由于吸附剂再生不完全,氢气纯度会随着循环次数增多有所下降。  相似文献   

8.
《动力工程学报》2016,(4):271-276
搭建了催化燃烧实验台,在保证催化燃烧室入口气体温度、流速相同的情况下,通过改变气体中甲烷和氢气的体积分数,得到不同体积分数甲烷气体在加入不同体积分数氢气情况下的催化燃烧特性.结果表明:在保证催化燃烧时入口气体温度为520℃条件下,加入低体积分数的氢气可有效加快甲烷催化燃烧的反应速度,降低甲烷的起燃温度,提高甲烷转化率;加入的氢气体积分数越高,对甲烷的催化燃烧助燃效果越好;而甲烷体积分数越高,氢气对甲烷的催化燃烧效果也越显著.  相似文献   

9.
什么是氢能     
化学元素氢(H——Hydrogen),在元素周期表中位于第一位,它是所有原子中最细小的。众所周知,氢原子与氧原子化合成水,但氢通常的单质形态是氢气(H2),它是无色无味,极易燃烧的双原子的气体,氢气是最轻的气体。在0℃和一个大气压下,每升氢气只有0.0899g重——仅相当于同体积空气重量的2/29。  相似文献   

10.
何博 《热科学与技术》2014,13(2):176-181
在考虑氢气溶解的条件下,运用SRK状态方程计算了液氧/氢在超临界环境下达到气-液平衡时氢氧组分在各相中的摩尔分数以及液氧的蒸发热随液氧表面温度的变化情况;根据气-液平衡时各组分在各相中的摩尔分数,以甲烷为参比态气体,运用扩展对比状态理论(ECST)计算了气相及液相氢氧混合物的pVT属性、黏性及导热系数。结果表明,在高压环境下,有一部分氢气溶解于液氧中,且随着温度和压强的增加其溶解度增大;若考虑氢气溶解,则氢氧混合物的临界温度低于氧的临界温度且随环境压强的增加而减小,这时液氧的蒸发热小于其蒸发潜热,也小于不考虑氢气溶解所得蒸发热。当氢氧混合物达到气液平衡状态时,液相混合物的黏性及导热系数随温度升高逐渐减小,气相混合物的黏性及导热系数随温度升高逐渐增加,最终气相及液相混合物的传输属性在其临界点附近几乎相同。  相似文献   

11.
对比分析了麦秆及其酶解残渣的基础物化特性,利用热重−红外联用技术研究了酶解残渣的热解反应过程及其主要气体产物的析出特性,并用混合反应模型计算了酶解残渣热解过程的表观动力学参数。结果表明,麦秆酶解残渣是一种富含木质素的高灰分、低热值的生物质原料,与麦秆原料相比,其热解过程相对平缓,主要失重温度区间为200℃ ~ 800℃,最大失重峰为350℃,与木质素的热解特性相近;提高升温速率可以使酶解残渣热解反应剩余产物质量明显减少,最大失重速率提高;热解主要气体产物中CH4析出的温度区间为400℃ ~ 700℃,CO和CO2在380℃、450℃和650℃都存在析出峰。动力学分析结果表明,酶解残渣热解过程在低温区(200℃ ~ 350℃)和高温区(350℃ ~ 800℃)分别遵循一级和二级反应动力学规律。  相似文献   

12.
研究了燃气热泵(GHP)系统在过渡季节制备生活热水的性能特性,分析了发动机余热回收对GHP系统性能的影响。在不同环境温度(15~24℃)和进水温度(37.7~47.8℃)下,考察回收与不回收发动机余热模式对生活热水制热量■、耗气功率(Pgas)及一次能源利用率(rPER)的影响规律。结果表明,随着环境温度的升高,Pgas减小,而■和rPE R呈现递增的趋势;随着进水温度的升高,Pgas增大,而■和rPER呈现递减的趋势。其中环境温度20~24℃与进水温度37.7~47.8℃为Qh的不敏感区间,在环境温度为24℃和进水温度为37.7℃条件下,rPER高达2.004。GHP系统的余热回收量分别占总制热量和发动机总余热的25.00%~30.16%和62.17%~71.56%,系统的余热利用率高。  相似文献   

13.
为有效利用太阳能,以有机朗肯−喷气增焓(带二次吸气的增效)蒸汽压缩式制冷系统为研究对象,建立了系统的热力学模型,分别选取R236fa、R245fa、RC318和R141b作为系统工质,研究了发生温度、凝结温度、冷凝温度、蒸发温度、膨胀机等熵膨胀效率及压缩机等熵压缩效率对系统性能的影响,并以系统性能最佳为目标对工质进行了优选。计算结果表明:对整个系统而言,R141b是最合适的工质,凝结温度和冷凝温度对系统性能有重要影响。以R141b为例,当发生温度在85℃、凝结温度为40℃、冷凝温度为40℃、蒸发温度为 −15℃时,系统COPs达到0.2528,采用喷气增焓技术对于环境温度很低、太阳能资源丰富的北方地区具有很大的优势。  相似文献   

14.
在Aspen Plus平台上构建生物质移动床热解多联产系统模型,通过对秸秆热解过程的模拟,研究了生物炭、生物油和生物燃气三态热解产物特性,以及热解温度对系统燃料投入、水耗和电耗的影响。结果表明,随热解温度升高,生物炭热值逐渐增大。生物油和生物燃气的产率分别在450℃和650℃附近达到最大值。当热解温度为450℃时,生物油重质组分主要由糖衍生类和脂肪酸类物质构成,而轻质组分主要包括醛类、醇类和水;当热解温度为650℃时,生物燃气则主要由CO2和CO构成。生产过程中,系统的燃料消耗和电耗均随着热解温度的升高而增大,冷却水消耗量则经历先减少后增加的过程,并在450℃附近达到最小值。  相似文献   

15.
为提高闭式单井系统取热性能,提出一种CO2单井增强地热系统(CO2-SEGS)。建立井筒流动换热和储层热-流-固耦合的数学模型,考虑CO2可压缩性以及井纵向压力传递特性,对比分析了水和CO2在SEGS中的取热性能,研究系统取热性能与封隔间距、井筒保温的关系。结果表明:(1)额定循环流量下,井口生产温度从134.09℃降低至116.06℃;CO2在采出过程中降压膨胀做功,产生明显的温降效应,中心管井口温度比底部低约57℃。(2)井筒不同位置处CO2的密度、热容差异很大,当循环流量小于50 kg/s时,依靠浮升力作用,SEGS可实现自主循环运行,无需额外泵功。(3)当水和CO2的流量分别为15 kg/s和40 kg/s时,两者年均取热速率近似相等,CO2的采出温度比水低约40℃,而压力损耗远小于水。(4)SEGS取热性能与封隔间距以及中心管保温性能呈正相关。研究结果可为SEGS系统的开发提供参考。  相似文献   

16.
为研究并开发高性能的吸附剂,本文以CaCl2和杉木木屑为原料,采用炭化活化造孔的方法制备复合吸附剂,考察了炭化活化温度对复合吸附剂性能的影响,炭化活化温度分别选择400℃、500℃、600℃和700℃。扫描电镜照片和元素分布图表明,复合吸附剂具有发达的孔隙结构而且CaCl2分布均匀。NH3吸附性能实验表明,吸附剂4 h的NH3吸附量随炭化活化温度的升高而增加。而对于吸附制冷而言,500℃炭化活化温度下制备的复合吸附剂具有最好的性能,其30 min的吸附量达到0.488 g/g。  相似文献   

17.
对三种生物质成型燃料在不同气氛下和不同升温速率下进行热重实验,研究反应条件对生物质成型燃料失重特性的影响规律,并对其空气气氛下的动力学特性进行了分析。研究结果表明,生物质在空气气氛下的挥发分析出速率比N2气氛下高,随着温度升高,N2气氛下主要是纤维素、半纤维素以及木质素的分解,而空气气氛下还伴随有其分解产物的燃烧。生物质中挥发分含量较高时,反应活性也比较高。实验温度由室温升至800℃时,在升温速率为10℃/min ~ 25℃/min范围内,随着升温速率的升高,松木热重曲线先向低温区移动再向温度较高的一侧移动,最大失重速率对应的温度也表现出相同规律,当升温速率为20℃/min时最大失重速率对应的温度最低,升温速率为25℃/min时失重峰值最大。动力学特性分析表明,采用2组分动力学模型可以较好地表征生物质在空气中的失重特性,计算结果与实验结果吻合度较高。  相似文献   

18.
实验研究了广东省典型农业生物质稻杆、甘蔗渣/叶的燃烧结渣特性。采用GB/T212-2001和ASTM E1755标准进行灰化实验,采用角锥法和一步法检测生物质的熔融特性。实验结果证实ASTM的低温灰化标准更适合稻杆类高无机盐含量的生物质原料。稻杆中碱金属氧化物含量达20%以上,是导致灰渣粘结和熔融的主要因素。由于角锥法灰熔点检测法提前将部分碱金属和Cl元素转化和析出,导致检测结果远高于实际燃烧的熔融温度;相比而言,一步法更具有直观性和指导作用。通过一步法实验获得稻杆临界结渣温度为700℃ ~ 750℃,甘蔗渣为850℃ ~ 900℃,甘蔗叶为900℃ ~ 950℃。CaO和Al2O3添加剂对于生物质燃烧过程具有一定的抗结渣功能,CaO通过与SiO2 (s) 反应生成高熔点的固态Ca3Si2O7 (s) 和MgOCa3O3Si2O4 (s),因此能消耗物料周围的SiO2 (s),抑制低温共融;Al2O3则通过生成高熔点温度的固态KAlSiO4和固态KAlSi2O6,减少低温共熔现象的发生。  相似文献   

19.
利用自主开发的急速加热和快速质谱气固相反应分析仪进行了CO2钙基吸附剂N2气氛中300℃/s、500℃/s、600℃/s、800℃/s高加热速率下释放机理的研究,实验发现CaCO3的热分解速率随着加热速率的提高而提高。根据最可几动力学模型函数判定方法,求得动力学三因子为:E = 129.38 kJ/mol,n = 6/5,A = 806 129 s-1,反应动力学模型函数为:f(α)=5/2(1-α)[-ln(1-α)]3/5。结果表明,急速加热器中CaCO3分解反应速率比在热重分析仪(thermo gravimetric analyzer, TGA)中快,活化能小于同条件下TGA测得的活化能,且动力学机理符合随机成核及长大模型,与TGA等慢速加热实验中测得的收缩核模型存在较大差异。  相似文献   

20.
采用实验测试与数值仿真的方法对NCR18650A三元锂电池组在1 ~ 3 C放电和1.6 C充电过程的温升特性进行测试,同时验证所建立电池产热模型的准确性。结果显示,实验测试结果与电池产热模型仿真结果之间的相对误差在合理范围内,满足工程应用需求。电池组在自然冷却的情况下,仅在1 C放电状态下符合其最佳工作区间42.5 ~ 45.0℃的要求,3 C放电倍率下最高温度为89.4℃。提出并建立基于热电致冷主动热管理模型,将热电致冷组件设置在电池组上方,致冷功率为50 W时可有效控制电池组3 C放电过程的温度,在最佳工作区间实现电池单体温差小于5℃,抑制电池组的热失效并实现良好的均温性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号