首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
王建  常汉宝 《柴油机》2010,32(6):5-8, 14
利用PRO/E建立TBD620柴油机的进气道和燃烧室三维模型,采用FIRE软件对进气过程进行仿真计算,分析了TBD620柴油机双进气道可控涡流系统对瞬态进气过程中涡团发展的影响。结果表明,双进气道可控涡流系统产生的进气涡流能显著改善缸内混合气的形成,提高柴油机低负荷工况时的燃烧性能。  相似文献   

2.
高压差下增压柴油机进气道流通特性研究   总被引:3,自引:0,他引:3  
建立了某柴油机进气道复杂三维流动稳态仿真模型,利用仿真方法研究了高压差下(大于50kPa)增压柴油机进气道流通特性.结果表明,对比常规低压差下气道稳流试验和仿真分析结果,高压差下该型进气道无因次流通系数明显降低.通过进气道三维流场分析,发现进气道内分离旋涡流动和流速分布不均引起高压差下气道有效流通面积减小是无因次流通系数降低的主要原因.  相似文献   

3.
王鹏  王建 《柴油机》2011,33(6):13-16
利用PRO/E建立TBD620柴油机的进气道和燃烧室三维模型;并在FIRE软件中对进气、压缩和燃烧过程进行仿真计算。分析了TBD620柴油机双进气道可控涡流系统对缸内涡流、油气混合和燃烧排放特性的影响。结果表明,低负荷工况时关闭双进气道可控涡流系统的进气控制阀能显著改善缸内混合气的形成,提高柴油机燃烧及排放性能。  相似文献   

4.
为了研究柴油机燃烧排放性能,建立共轨620柴油机包括进气道和燃烧室在内的三维几何模型,利用FIRE软件划分网格并且进行数值仿真计算,在喷油量一定的前提下分析共轨系统中各参数对柴油机燃烧与排放性能的影响。结果表明喷油提前角和共轨压力对整机性能的影响较大。增大喷油提前角和共轨压力、减小喷孔直径有利于改善燃烧排放性能。  相似文献   

5.
针对高转速和大负荷工况下发动机粗暴燃烧、热负荷过高的问题,在一台高强化单缸柴油机上加装进气道辅助喷水系统进行仿真试验,研究了进气道喷水对燃烧与排放特性的影响。通过建立一维热力学模型和三维全气道模型,在独立进气道水喷射系统的高强化单缸柴油机上进行试验,对比不同喷水压力和水油比对缸内氧气浓度、燃烧压力、燃烧温度和NOx排放的影响。试验结果表明,喷水压力为1 MPa、水油比为0.6时,缸内最高燃烧温度降低34.2 K,NOx生成量减少24.6%。进气道喷水可明显降低缸内燃烧温度,在优化排放的同时有效改善了高强化柴油机热负荷过高的问题。  相似文献   

6.
螺旋进气道的三维造型设计研究   总被引:8,自引:0,他引:8  
开发了发动机螺旋进气道的三维造型设计的研究,应用非均匀有理B样条(NURBS)描述气道外形的方法以及仿形设计与概念设计途径与关键技术。探讨了螺旋进气道的设计规律,实现了根据给定设计参数自动建立柴油机螺旋进气道的三维几何模型的目标。  相似文献   

7.
《内燃机》2021,(3)
柴油机进入气缸的空气量和涡流强度由进气道几何形状决定,进气特性对缸内燃烧特性有重要的影响。本文采用现代逆向设计方法,对某高压共轨柴油机进气道进行设计,获得符合要求的进气道形状,利用AVL软件对气道进行CFD流动仿真分析,根据结果进行优化改进,达到理想的燃油与空气运动特性,获取最佳的燃烧比,满足高压共轨柴油机缸内燃烧特性的要求。对先进的快速成型制造技术进行研究并应用于进气道模型制造,通过气道稳流吹风试验,验证进气道实际流量系数和实际涡流比满足设计要求。  相似文献   

8.
快速成型技术及其在进气道制造中的应用   总被引:1,自引:0,他引:1  
韩晓  刘永长 《柴油机》1999,(5):32-35
本文介绍了快速成型技术、在MICROSTATION下进行的柴油机螺旋进气道三维CAD模型的制作和螺旋进气道的快速集成设计方法。  相似文献   

9.
优化柴油机气道设计可以有效改善柴油机的燃烧性能,对优化排放、降低燃油耗至关重要。为了获得具有一定流量系数和涡流比的气道,以某中型柴油机进气道为研究对象,通过流体仿真对气道进行局部优化,预测了各升程的流量系数和涡流比。通过实物芯盒优化喉口结构和修模芯盒内腔,优化气道设计,应用Geomagic Design X逆向建模软件建立了三维(3D)数模,并将逆向后的数模建立快速验证气道芯盒。结果表明,基于逆向建模技术的气道正向开发可以实现气道的精确设计,对于优化气道设计、提高柴油机性能具有重要作用。  相似文献   

10.
李丽  郑清平  黎苏 《柴油机》2011,33(2):10-15
研究对象为一台由柴油机改造的火花点火甲醇发动机,应用AVL-FIRE软件的FEP技术建立进气道-进气门-气缸部分三维动态网格,建立数学模型并验证了模型的可行性;详细分析了缸内流体速度场分布,甲醇与空气的混合气燃烧火焰扩散及传播过程;研究了火花塞位置对甲醇发动机燃烧过程的影响,结果表明火花塞设置在原柴油机喷油器处较为合理...  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

19.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

20.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号