首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为探究不同体积分数N2对复采工作面遗煤复燃过程的防治效果,采用自主研发的程序升温试验装置,对煤样分别通入体积分数为10%、20%、30%和40%的N2,以氧化反应过程中耗氧速率VO2、一氧化碳产生率VCO和表观活化能E的变化情况来反映煤自燃的发展程度。试验表明:不同体积分数的N2对煤氧化升温过程均具有抑制作用,相比于煤在纯空气条件下的氧化自燃,通入的N2体积分数越大,煤初次自燃和二次氧化升温过程的VO2VCO更低、E更高,说明通入的氮气体积分数越大,对煤氧化升温过程的抑制效率越好。其中,在煤初次自燃阶段,当N2体积分数CN2≥20%时抑制效果更佳;在煤二次氧化复燃阶段,当N2体积分数CN2≥40%时抑制效果更佳。  相似文献   

2.
为掌握不同体积分数CO2对氧化煤复燃过程的抑制效果,采用自主研制的煤自燃氧化程序升温试验装置,对平煤八矿煤样分别通入体积分数为10 %、20 %、30 % 和40 % 的CO2进行试验研究,测定了煤初次和二次氧化升温过程中的耗氧速率、CO产生率以及表观活化能的变化规律。结果表明:与煤在纯空气条件下的氧化自燃相比,不同体积分数的CO2对煤氧化升温过程均具有抑制作用。同时,通入的CO2体积分数越大,煤初次和二次氧化升温过程的耗氧速率和CO产生率越低,表观活化能越高,即CO2的体积分数越大,对氧化煤复燃过程的抑制效果越好。  相似文献   

3.
预氧化煤自燃特性试验研究   总被引:9,自引:0,他引:9  
为研究预氧化煤自燃特性参数变化规律,采用程序升温试验研究原煤和预氧化煤的自燃特性。结果表明:与原煤相比,随着温度增加,预氧化至90℃的煤样耗氧速率、CO产生率、CO2产生率、放热强度均大于原煤;随着温度的增加,预氧化至130℃的煤样与原煤的耗氧速率、CO产生率、放热强度曲线的交叉温度为80~90℃,预氧化至170℃的煤样的交叉温度为110~120℃,小于交叉温度时,预氧化煤的耗氧速率、CO产生率、放热强度大于原煤,超过交叉温度后小于原煤;小于80℃时,预氧化至130、170℃的煤样的CO2产生率大于原煤,超过80℃后小于原煤;预氧化煤的最小浮煤厚度、下限氧浓度极值减小,上限漏风强度极值增大;煤的氧化程度越高,自燃极限参数极值变化量越大。  相似文献   

4.
《煤炭技术》2015,(10):290-292
为了研究不同程度的预氧化对煤二次氧化的影响,采用程序升温试验装置先对2组煤样分别进行不同程度的预氧化,再与未做任何处理的原煤样共同程序升温至170℃。结果表明:预氧化温度越高,煤样生成C2H4和C3H6所需温度越低;通过对低温氧化阶段煤分子活化能的计算,得出预氧化170℃的煤样自燃倾向性最强;预氧化75℃的煤样,最大放热强度和耗氧速率大幅度提高,且超过预氧化170℃的煤样及原煤样。  相似文献   

5.
为了研究不同含水率气煤的自燃特性,通过程序升温实验系统,分别对5种煤样进行低温氧化实验。实验结果表明:在低温氧化过程中,不同含水率气煤的自燃特性参数均随温度的升高呈指数变化趋势;煤样的CO与CO2体积分数、耗氧速率、放热强度均表现出低含水率下大于原煤,高含水率下小于原煤的规律;在加速氧化阶段,原煤的活化能为75.7 kJ/mol,相比之下含水率为5.87%、9.81%、13.81%的煤样活化能分别降低了6.8、25.6、4.6 kJ/mol,而含水率17.85%煤样的活化能却上升了4.1 kJ/mol。研究结果表明:一定范围内水分含量越大,煤样的表观活化能越小,煤的自燃倾向性越高;而过量水分会抑制热量积聚,使煤的活化能变大,自燃倾向性变低。  相似文献   

6.
王凯  和运中  尚博 《煤矿安全》2020,51(7):31-35
为研究预氧化对煤复燃过程极限参数的影响,采用程序升温装置模拟了煤初次氧化与二次氧化过程,对比分析2次氧化过程中煤自燃耗氧速率、气体生产率、放热强度及极限参数。结果表明:氧化煤和原煤的耗氧速率、气体产生率和放热强度均随煤温的升高呈近指数规律增长,但氧化煤在70℃前稍高于原煤,70℃之后低于原煤;氧化煤与原煤发生自燃的上限漏风强度先降低后升高,下限氧浓度与最小浮煤厚度先升高后降低;从升温过程中煤体自燃的极限参数极值角度,氧化煤发生自燃的"门槛"降低,更易自燃。  相似文献   

7.
《煤炭技术》2016,(3):152-154
煤经水浸泡后的自燃特性会发生变化,为了研究水浸煤的自燃特性,采用煤自燃程序升温实验装置,进行经过3个月水浸泡煤样和原煤样的程序升温实验,研究煤的自燃特性。计算了两种情况下煤样的耗氧速率、放热强度,得出了煤自燃极限参数和表观活化能。煤经水浸泡后,煤分子的表面活性官能团增加,低温阶段的氧化放热性增强,自燃危险性增大。  相似文献   

8.
为揭示锦界煤矿31116工作面采空区遗煤的氧化特性,利用程序升温实验系统研究了原煤、预氧化煤、浸水风干煤的低温氧化特性,分析了指标气体产生量、耗氧速率和放热强度与温度的对应关系,实验表明:实验过程中煤样的自燃特性参数均随温度升高呈指数变化规律,CO可作为30~110℃之间的指标气体、C2H4可作为110~200℃之间的指标气体;二次氧化气体产生量、耗氧速率、放热强度均在反应前期低于初次氧化,反应后期高于初次氧化;浸水风干煤样氧化过程中的气体产生量、耗氧速率和放热强度更高,相较于原煤样,开始检测到CO、C2H4的温度点均提前了10~20℃,耗氧速率最高增大了173×10-11mol/(cm3·s),最小放热强度与最大放热强度最高分别增加了211×10-5 J/(cm3·s)和261×10-5 J/(cm3·s),说明浸水过程对煤氧化进程具有一定的促进作用。  相似文献   

9.
《煤矿安全》2017,(5):41-45
为了研究解吸附煤样的自燃特性,运用煤低温氧化试验系统测试了煤样在氮气条件下恒温解吸附及解吸附再次氧化升温特性,分析了解吸附过程的气体产物规律和解吸附煤样的自燃特性参数,研究原煤和解吸附煤样的氧化、放热特性。结果表明:恒温解吸附过程中产生CO、CO_2、CH_4气体,CO_2的气体产生量远大于CO、CH_4,随着箱温温度的升高,气体产量也增大;与原煤相比,恒温30℃和50℃解吸附煤样的耗氧速率、放热强度均小于原煤;在70℃之前,恒温70℃解吸附煤样与原煤的耗氧速率和放热强度相似,在90~110℃之间出现交叉温度点,交叉温度点之前原煤的耗氧速率、放热强度大于恒温70℃解吸附煤样,之后小于原煤,说明不同恒温解吸附过程对煤的自燃特性的影响具有一定的差异。  相似文献   

10.
为了预防任楼煤矿52煤层自然发火,做好煤自燃发展程度的前期预测,准确预报工作,采用煤自燃程序升温试验,测试分析了52煤层煤样的耗氧速率、CO、CO2和CH4产生率等特性参数变化规律,以及CO、CH4、C2H6、C2H4等气体随煤温变化规律,确定了煤自燃标志气体。结果表明:52煤层煤样耗氧速率、CO、CO2和CH4产生率均随煤温升高呈不断增大趋势;CO、C2H4可以作为煤自燃标志性气体;52煤层煤样的临界温度范围为60~70℃,干裂温度范围为110~120℃。研究成果对建立煤自燃早期预测预报,并采取有效的防灭火措施具有指导作用。  相似文献   

11.
为了提高发耳煤矿近距离煤层自燃预测的准确性,对发耳煤矿6个主采煤层的煤样进行程序升温实验,分别得到低温氧化阶段的临界温度、干裂温度和CO、C2H4等气体产生规律。通过分析煤样的耗氧速率、放热强度、气体比值与温度之间的对应关系,建立了发耳煤矿近距离煤层自燃预测及分级预警指标。结果表明:1煤层和3煤层的氧化性最强,7煤层的氧化性相对较弱。在低温氧化阶段,CO生成量随温度的升高显著增加,在110℃~120℃时开始产生C2H4,耗氧速率、CO产生率、CO2产生率在70℃~80℃和130℃~140℃范围内出现2次明显的突变。通过对比、和气体比值进行分析,能消除实验条件的误差,提高近距离煤层自燃预测的准确性和灵敏度。  相似文献   

12.
郭君 《山东煤炭科技》2022,(2):98-99,102,106
为有效预测色连煤矿8109工作面采空区自燃状况,指导煤矿采取针对性防灭火措施,需确定煤自然发火标志性气体.通过对煤样进行程序升温试验方法,研究煤的低温氧化特性并对煤自燃预测指标进行了优选.结果 表明:煤低温氧化过程中活性较大,常温下就可以生成CO,干裂温度在100~110℃之间.使用格雷哈姆系数R2、R3区分化学吸附阶...  相似文献   

13.
李耀谦 《中州煤炭》2016,(11):20-24
为解决阳煤集团二矿采空区浮煤自燃问题,采用三态防灭火材料在80704工作面采空区进行现场试验。通过光纤温度在线监测系统和束管监测进行相关数据采集,采空区气体浓度、温度、三带在注入三态材料后发生显著变化,各测点的O2浓度均在降低,最终维持在5%左右,CO2浓度维持在10%左右,采空区深部的温度维持在20 ℃左右,CO浓度维持在11×10-6;氧化升温带提前了11 m,缩短了18 m,窒息带提前了29 m,有效防止了采空区浮煤的自燃氧化。验证了既定三态材料防灭火系统的适用性,同时也说明了三态材料防止采空区浮煤自燃的可靠性。  相似文献   

14.
氧化煤复燃过程自燃倾向性特征规律   总被引:5,自引:0,他引:5       下载免费PDF全文
陆新晓  赵鸿儒  朱红青  韩宇  薛雪 《煤炭学报》2018,43(10):2809-2816
煤自燃是矿井安全生产中的主要灾害之一,火区启封时的氧化煤复燃问题尤其需要重视。为揭示不同氧化程度煤复燃特性,研究分析氧化煤指标性气体产生规律,并对特征官能团进行吸光度定性分析和峰面积定量分析。结果表明氧化煤自燃倾向性判定指数为I_(ym)I_(80℃yh)I40_(℃yh)I_(120℃yh)I_(160℃yh)I_(200℃yh)(ym代表原煤,yh代表氧化煤),原煤中还原性官能团多于氧化煤,含氧官能团少于氧化煤,低温氧化析出指标性气体速率大于氧化煤,氧化煤较原煤与氧结合能力减弱,煤自燃倾向性降低,80℃氧化10 h后的煤气体析出速率较其他温度更接近原煤,还原性官能团亦接近原煤,煤自燃倾向性更高,更易复燃。基于以上研究,确立了不同氧化程度煤复燃规律。  相似文献   

15.
谢鹏  刘强 《中州煤炭》2020,(8):68-71
针对红阳二矿12号煤层遗煤氧化的规律与特点,有效地进行防灭火工作,掌握采空区中遗煤氧化的速度,对红阳二矿12号煤层进行了煤样升温氧化实验,在温度不断升高的过程中检测出CO与多种烯烃气体,并且在不同温度下煤体析出气体的速度不同,最终选择CO、C2H4、C2H2作为标志性气体,产生的临界温度分别为59、176、403 ℃。在采空区检测出CO气体,说明采空区遗煤进入快速氧化阶段;检测出C2H4气体时,遗煤进入剧烈氧化状态;检测出C2H2气体时,说明采空区中已经产生明火,井下人员需要迅速撤离。通过煤体标志性气体的确定,建立12号煤层自燃预警系统,保证井下工作人员的生命安全与能源的充分利用。  相似文献   

16.
为探究浅埋综采面采空区遗煤氧化过程中的CO产生规律,本文以高家梁矿浅埋煤层为研究对象,与阳泉矿深埋煤层相对比,利用油浴升温氧化系统对高家梁矿不同煤层的综采工作面煤样和阳泉矿煤样进行了升温氧化实验。研究表明:高家梁矿浅埋深各煤样在低温40 ℃时消耗O2产生CO体积分数达到1×10-4;各煤样在氧化升温过程中的耗氧速率、CO产生速率和放热强度随温度升高逐渐增加;高家梁矿浅埋深煤样产生了40 ℃和130 ℃两个临界温度,分别对应加速氧化反应起点和剧烈氧化反应起点,而阳泉矿深埋煤层煤样只有一个不明显临界温度,且相对滞后,达100 ℃~120 ℃;在相同煤温下,高家梁矿浅埋深各煤样CO产生量和产生速率、O2的消耗量和消耗速率均明显大于阳泉矿深埋煤层;高家梁矿浅埋深各煤层比阳泉矿煤层更早进入加速氧化阶段,且所需温度更低。可见,煤层埋藏越浅,升温氧化时煤的耗氧速率和CO产生速率越快,升温对浅埋深煤样的氧化放热促进作用更强。  相似文献   

17.
悬浮磁化焙烧—磁选已在难选铁矿石的开发中实现工业应用,焙烧产物的冷却过程是影响磁选指标的 重要因素。 空气氧化冷却可以将焙烧产物中的部分磁铁矿氧化成强磁性磁赤铁矿,同时可以回收氧化过程释放的潜 热,具有广阔的应用前景。 对酒钢铁矿石进行了悬浮磁化焙烧—氧化冷却试验。 结果表明,氧化温度、氧化时间和空 气流量对氧化过程及磁选指标影响显著。 最佳的氧化条件为氧化温度 300 ℃ 、氧化时间 5 min、空气流量 500 mL / min。 在最佳条件下,氧化冷却产物中磁赤铁矿含量为 17. 74%,磁选精矿铁品位为 55. 34%、铁回收率为 90. 31%。 焙 烧产物的氧化冷却过程按两条路径同时进行,一是 Fe3O4→α—Fe2O3,二是 Fe3O4→γ—Fe2O3→α—Fe2O3;氧化温度高 于 300 ℃时,磁铁矿主要被氧化为赤铁矿。 因此,焙烧产物在氧化冷却时,应先在 N2 中冷却至 300 ℃ ,再经空气氧化 冷却至室温,以获得较高的磁赤铁矿含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号