首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 86 毫秒
1.
采用共沉淀法和高温固相烧结相结合,合成了锂离子电池层状LiNi1/3Co1/3Mn1/3O2正极材料。采用ICP-AES元素分析方法、XRD和SEM对LiNi1/3Co1/3Mn1/3O2正极材料的成分、结构和形貌进行了表征。SEM测试结果表明,LiNi1/3Co1/3Mn1/3O2的形貌近似为球形,且颗粒分布均匀。并对其进行了充放电性能测试,结果表明:LiNi1/3Co1/3Mn1/3O2在25℃、2.5~4.6 V、0.1 C倍率下,首次放电容量达189.32 mAh.g-1(锂为负极),C/LiNi1/3Co1/3Mn1/3O2在1 C、2.75~4.2 V下,初始放电比容量为145.5 mAh/g,循环100次后,容量保持率为98.41%。是一种有发展前景的锂离子电池正极材料。  相似文献   

2.
综述了Al2O3包覆LiNi(1/3)Co(1/3)Mn(1/3)O2锂离子电池正极材料的研究现状与进展,并评述了其制备方法和包覆改性;讨论了包覆改善该正极材料性能的机理;提出了这种正极材料的研发过程中的一些问题并对其未来的发展前景作了展望。  相似文献   

3.
LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278mAh.g^-1,具有a—NaFeO2型层状结构,制备方法主要高温固相合成法、共沉淀法、流变相反应法、溶胶-凝胶法等,文章对制备方法进行了重点沦述,讨论了相应的电化学性能、结构特征和目前存在的问题,并对层状LiNi1/3Co1/3Mn1/3O2正极材料的发展进行了展望。  相似文献   

4.
锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2具有比商业化正极材料——LiCoO2更低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注。主要介绍了Li Ni1/3Co1/3Mn1/3O2正极材料的合成改性方法及其近年来在电化学性能方面所取得的成果和进展,并简要概括了该材料结构和发展趋势。不断提高Li Ni1/3Co1/3Mn1/3O2正极材料的振实密度以及电化学性能特别是其在高倍率充放电条件下的循环性能将成为相关科研工作者的研究重点。  相似文献   

5.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

6.
综述了A1203包覆LiNi(1/3)Cows)Mn(1/3)O2锂离子电池正极材料的研究现状与进展,并评述了其制备方法和包覆改性:讨论了包覆改善该正极材料性能的机理:提出了这种正极材料的研发过程中的一些问题并对其未来的发展前景作了展望。  相似文献   

7.
三元正极材料(LiNi1/3Co1/3Mn1/3O2)具有较好的安全性能和循环性能,兼顾了其它二元电极材料的诸多优点,成为目前高性能锂离子电池正极材料的研究重点之一,其市场占有率已经超过40%。详细的叙述了近年来国内外对三元正极材料的制备和改性所做的研究,着重介绍了其高温固相法、共沉淀法、溶胶-凝胶法等制备方法及掺杂、包覆改性方法对LiNi1/3Co1/3Mn1/3O2电化学性能影响,以及这些改性方法存在的问题。  相似文献   

8.
分别以纳米氧化铝、氢氧化铝及异丙醇铝为原料,采用液相浸渍法对LiNi1/3Co1/3Mn1/3O2材料进行氧化铝包覆,考察不同包覆源在LiNi1/3Co1/3Mn1/3O2材料表面进行氧化铝包覆后对材料电化学性能的影响。SEM及XRD结果显示,产物为层状α-NaFeO2结构,氧化铝均匀包覆在LiNi1/3Co1/3Mn1/3O2材料表面。充放电性能测试结果表明,在3种铝源中,以异丙醇铝为包覆源的材料性能最佳:在3.0~4.6 V的电压下,0.1 C倍率下首次放电比容量为196.1 mA·h/g, 1 C下循环50周后容量保持率为95.6%。  相似文献   

9.
层状结构LiNi1/3Co1/3Mn1/3O2正极材料制备过程与电化学性能   总被引:1,自引:0,他引:1  
采用固相自引发基团置换法结合高温焙烧制备了亚μm级的LiNi1/3Co1/3Mn1/3O2正极材料。研究了热处理气氛、烧结时间对材料结构及性能的影响。研究结果表明在空气氛围下900℃焙烧20 h制备的LiNi1/3Co1/3Mn1/3O2正极材料具有最佳的电化学性能。  相似文献   

10.
唐致远  余明远  薛建军  高飞 《化工进展》2007,26(3):396-399,404
采用溶胶凝胶法合成锂离子电池正极材料LiMn2O4、LiNi0.01Co0.01Mn1.98O4和LiNi0.01Co0.01Mn1.98O3.95F0.05。使用X射线衍射、扫描电子显微镜对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料,用循环伏安、交流阻抗及充放电测试的电化学测试方法对材料进行了电化学的研究。结果表明,合成的LiNi0.01Co0.01Mn1.98O3.95F0.05材料的初始容量高于LiNi0.01Co0.01Mn1.98O4,而循环性能优于LiNi0.01Co0.01Mn1.98O4和LiMn2O4,显示了阴阳离子复合掺杂对于阳离子单一掺杂的优势。  相似文献   

11.
低共熔混合锂盐合成LiNi_(0.8)Co_(0.2)O_2的研究   总被引:1,自引:0,他引:1  
常照荣  齐霞  吴锋  汤宏  孙东 《应用化工》2005,34(9):535-538
在空气气氛中,采用低共熔混合物L iNO3-L iOH为锂盐,制备出了锂离子电池正极材料L iN i0.8Co0.2O2。XRD分析表明:此工艺制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的充放电电流密度和2.7~4.2 V的电压范围内,L iN i0.8Co0.2O2首次放电比容量为145.2 mA.h/g,充放电库仑效率为83.8%;循环20次后,放电比容量为124.8 mA.h/g。该方法能制备出电化学性能良好的L iN i0.8Co0.2O2正极材料。  相似文献   

12.
低共熔混合锂盐合成Co和Al共掺杂的LiNiO_2   总被引:2,自引:0,他引:2  
在空气中,采用低共熔混合物L iNO3-L iOH为锂盐,制备了Co和A l共掺杂锂离子电池正极材料L iN i0.8Co0.15A l0.05O2。XRD分析表明,制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的放电电流密度和2.7—4.2 V的电压范围内,L iN i0.8Co0.15A l0.05O2首次放电比容量达147.6 mA.h/g,库仑效率达84.3%,第20次的放电比容量为133.8 mA.h/g。该合成新工艺,能制备出电化学性能良好的Co和A l共掺杂的L iN iO2正极材料。  相似文献   

13.
经过几十年的发展,锂离子电池由于其在能量密度、循环寿命等方面的优势,在小心电子产品上获得了广泛的应用。在目前的商业化锂离子电池产业中,应用最广泛的正极材料是由Good enough等开发的LiCoO2材料,但是其有毒、热稳定性差等特点,导致其难以得到进一步的应用。因此,通过开发他们的复合材料成为了锂离子电池正极材料开发的主要研究方向之一。论文主要对LiNi1/3Co1/3Mn1/3O2材料的热聚合法制备及性能表征进行了一定的研究。  相似文献   

14.
层状结构Li[Ni1/3Co1/3Mn1/3]O2是目前国内外锂电池正极材料的研究热点。制备这种三元系材料的方法是热点中的重点。本文主要综述了不同的制备方法以及这些方法的简单对比,并探讨了Li[Ni1/3Co1/3Mn1/3]O2的应用前景。  相似文献   

15.
锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2的研究   总被引:3,自引:0,他引:3  
顾健  顾大明  史鹏飞 《精细化工》2004,21(2):88-90,94
低成本、高比容量的LiNi0.8Co0.2O2是取代已商品化锂电池正极材料LiCoO2的候选材料。用工业原料,通过共沉淀法(pH=11 2±0 05)合成了β Ni0.8Co0.2(OH)2,将其和LiOH·H2O混合,在空气中先后于650℃和750℃烧结8h和20h,制得具有良好层状结构的LiNi0.8Co0.2O2。用合成的材料制备电池,在0 2C、3 0~4 1V进行充放电实验,其放电平台在3 8V以上,首次放电容量超过170mA·h/g,10次循环后,放电容量还能保持在164mA·h/g左右,且库仑效率达到96%以上。  相似文献   

16.
首次报道了溶剂热法合成一种新型锂离子电池正极材料LiFe1/3Mn1/3Co1/3PO4,并对其结构和电化学性能进行了研究。合成的LiFe1/3Mn1/3Co1/3PO4属正交晶系结构,扫描电镜照片显示合成的材料是长度300~400nm,宽度200.250nm,厚度约100nm的板状结构。以碳包覆后的LiFe1/3Mn1/3Co1/3PO4作为正极材料组装电池进行充放电测试,在3.5V,4.1V,4.6V出现了三个平台,分别对应Fe^3+/Fe^2+,Mn^3+/Mn^2+,Co^3+/Co^2+氧化还原电对,0.2C时首次放电容量达到142.2mAh/g,经过50次循环后可逆容量仍保持在92.6mAh/g。  相似文献   

17.
LiNi1/3Co1/3Mn1/3O2 as a promising cathode material in lithium‐ion batteries was synthesized by flash/field‐assisted sintering technique for the first time. This study showed that the current‐limited synthesis of LiNi1/3Co1/3Mn1/3O2 could be carried out at temperatures less than 400°C for only 8 minutes, compared with the conventional pressureless sintering at 850°C for 12 hours. X‐ray diffraction results showed the phase evolution from precursor mixtures to the final LiNi1/3Co1/3Mn1/3O2 products during flash/field‐assisted sintering process and a well‐layered structure without undesirable cation mixing in the as‐formed LiNi1/3Co1/3Mn1/3O2. Combined with the lowered sintering temperatures and reduced sintering time, the excellent electrochemical performance of flash/field‐assisted sintered LiNi1/3Co1/3Mn1/3O2 materials suggested that this technique could be an energy‐efficient approach for the synthesis of lithium‐ion battery cathode materials and other materials requiring high‐temperature heat treatment.  相似文献   

18.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

19.
探讨了磷酸体系下不同因素对废旧锂电池正极材料中有价金属浸出效率的影响,结果表明:在浸出时间60min,反应温度60℃,磷酸浓度2mol/L,液固比20mL/g,还原剂(H2O2)体积分数为4%时,可得最佳浸出效果,Co、Li、Mn、Ni浸出效率分别可达96.3%、100%、98.8%和99.5%;浸出液添加相应比例金属离子,采用草酸共沉淀法制备前体材料(Ni1/3Co1/3Mn1/3)C2O4,并得到相应再生磷酸溶液。再生磷酸进行循环浸出实验,实验研究结果表明:循环浸出5次之后Li的浸出率仍可保持在90.1%,而Co、Mn和Ni的浸出率在75.0%以上。前体添加锂源Li2CO3煅烧合成Li(Ni1/3Co1/3Mn1/3)O2材料,考察了不同温度对Li(Ni1/3Co1/3Mn1/3)O2材料合成的影响,结果显示,当合成温度为800℃时,得到的材料性能最优良,初次放电容量可达136.4mA·h/g。在0.2C下经过50圈循环后容量保持率为97.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号