首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kind of chemical vapor infiltration (CVI) Si3N4–BN–SiCN composite ceramic with excellent electromagnetic wave (EMW) absorbing properties is obtained by CVI BN interface and SiCN matrix on porous Si3N4 ceramics, and then annealed at high temperatures (1200°C‐1500°C) in N2 atmosphere. The crystallization behavior, EMW absorbing mechanism and mechanical properties of the composite ceramics have been investigated. Results showed CVI SiCN ceramics with BN interface were crystallized in the form of nanograins, and the crystallization temperature was lower. Moreover, both EMW absorbing properties and mechanical properties of CVI Si3N4–BN–SiCN composite ceramics firstly increased and then decreased with the increase in annealing temperature due to the influence of BN interface on the microstructure and phase composition of the composite ceramics. The minimum reflection coefficient (RC) and maximum effective absorption bandwidth (EAB) of the composite ceramics annealed at 1300°C were ?47.05 dB at the thickness of 4.05 mm and 3.70 GHz at the thickness of 3.65 mm, respectively. The flexural strength and fracture toughness of the composite ceramics annealed at 1300°C were 94 MPa and 1.78 MPa/m1/2, respectively.  相似文献   

2.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

3.
Research into the high-temperature microstructural evolution of SiCN ceramic fibers is important for the aerospace application of advanced ceramic matrix composites in harsh environments. In this work, we studied the microstructural evolution of SiCN fibers with different C/N ratios that derived from polycarbosilane fibers at the annealing temperature range of 1400∼1600 °C. These results showed that the phase separation of SiCxNy phase and the two-dimension grain growth process of free carbon nanoclusters could be processed at the researched temperature range. As the annealing temperature increased to 1600 °C, the crystallization of amorphous SiC and Si3N4 could be detected. SEM and Raman analysis showed that the decomposition and carbothermal reduction of the Si3N4 phase at high temperatures played primary roles in contributing to the fiber strength degradation. Thus, a higher C/N ratio, which is beneficial for inhibiting the decomposition of amorphous Si3N4, helps SiCN fibers retain high tensile strength at high temperatures.  相似文献   

4.
SiC nanowire/siliconboron carbonitride-Silicon nitride (SiCnw/SiBCN-Si3N4) ceramics were prepared via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI) technique. The as-prepared ceramics were annealed at varying temperatures (1200–1600 °C) in a N2 atmosphere, and their crystallization mechanism and absorbing properties were subsequently studied. The absorbing properties of the SiCnw/SiBCN-Si3N4 ceramics improved with the annealing temperature up to a certain value and decreased thereafter. Among the samples tested, the SiCnw/SiBCN-Si3N4 ceramics annealed at 1300 °C showed the highest permittivity (real and imaginary parts) and dielectric loss values in the X-band (ca. 5.34, 2.55, and 0.47 respectively), and this could be attributed to the precipitation of carbon and SiC nanocrystals. The sample treated at 1300 °C decreased its minimum reflection coefficient (RC) from −12.0 to −59.68 dB (compared with the as-received SiCnw/SiBCN-Si3N4 ceramics) and the effective RC (below -10 dB) in the whole X-band could be achieved when the thickness was set to 3–3.5 mm. These results revealed that the absorbing performance was significantly improved after the heat treatment at 1300 °C.  相似文献   

5.
Si2N2O ceramics were prepared by plasma activated sintering using nanosized amorphous Si3N4 powder without sintering additives within a temperature range of 1400°C–1600°C in vacuum. A mixed Si–N4?n–On (n = 0, 1…4) amorphous structure was formed in the process of sintering, and Si2N2O crystals were nucleated where the local structure was similar with Si2N2O. After sintering at 1600°C, the Si2N2O ceramic was composed of elongated plate‐like Si2N2O grains and amorphous phase. The Si2N2O grains showed a width of less than 100 nm and a very high aspect ratio.  相似文献   

6.
C/SiBCN composites with a density of 1.64 g/cm3 were prepared via precursor infiltration and pyrolysis and the bending strength and modulus at room temperature was 305 MPa and 53.5 GPa. The precursor derived SiBCN ceramics showed good thermal stability at 1600 °C and the SiC and Si3N4 crystals appeared above 1700 °C. The bending strength of the composites was 180 MPa after heat treatment at 1500 °C, and maintained at 40 MPa-50 MPa after heat treatment for 2 h at 1600 °C–1900 °C. In C/SiBCN composites, SiBCN matrix could retain amorphous up to 1500 °C and SiC grains appeared at 1600 °C but without Si3N4. The reason for no detection of Si3N4 was that the carbon fiber reacted with Si3N4 to form an interface layer (composed of SiC and unreacted C) and a polycrystalline transition layer (composed of B and C elements), leading to the degradation of the mechanical properties.  相似文献   

7.
In this paper, Co2Si(Co)/SiCN composite ceramics were synthesized by simple precursor-derived ceramics method. The phase composition, morphology, and microwave absorption properties of Co2Si(Co)/SiCN composite ceramics at different pyrolysis temperatures (1000–1400°C) were studied. When pyrolysis temperature was 1300°C, carbon nanowires (CNWs), Co2Si, Si2N2O, SiC and Si3N4 were in situ generated and the best electromagnetic wave (EMW) absorption performance was obtained. The minimum reflection loss reached−50.04 dB at 4.81 mm, and the effective absorption bandwidth broadened to 3.48 GHz (14.52–18 GHz) at 1.31 mm. The excellent EMW absorption performance mainly comes from the coexistence of multiple loss mechanisms, including the magnetic loss of Co2Si, the conduction loss of CNWs, and the heterogeneous interfaces polarization between varieties of nanocrystals and amorphous ceramic matrix. By adjusting the sample thickness from 1 to 5 mm, the effective absorption of S1300 can cover the entire X and Ku bands, from 3.36 to 18 GHz. This study provides a simple way to synthesize high performance ceramic-based microwave absorbing materials.  相似文献   

8.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

9.
A dense α-Si3N4-based ceramic protective coating was successfully prepared on porous Si3N4 ceramics by a liquid infiltration and filling method. The coating composed of a primary α-Si3N4 phase and secondary O'-Sialon, β-Sialon, and Y–Si–Al–O–N glass phase. After thermal shock at ΔT = 1000°C for five times, cracks were produced, but the tip of crack stopped inside the coating; so the coated porous Si3N4 ceramics still had a good waterproof ability and its water absorption was only 7%. During thermal shock, toughening mechanisms involving needle-like O'-Sialon particle bridging, crack deflection, and rough fracture, occurred within the cracks, contributing to thermal shock resistance of the coating. The dielectric constant of the coated porous Si3N4 ceramics showed a slow increase trend with increasing temperature, and it reached the maximum value of 3.57 at 1100°C at the frequency of 11 GHz. The dielectric loss increased slowly as the temperature increased from room temperature to 900°C, but it started to increase evidently when the temperature was over 900°C.  相似文献   

10.
In this paper, a honeycomb Si3N4 ceramic was fabricated by 3D printing with a well-preserved structure. The effects of Si3N4 content on the rheological properties of Si3N4/sol–silica ink and the printing resolution of products were investigated. The microstructure, phase composition, liner shrinkage rate, and fracture behavior of printed samples before and after sintering were systematically characterized in detail. The results showed that the modified inks had the optimized rheological properties, and the stress–shear rate curves corresponding to each slurry could be well described by Bingham and Herschel–Bulkley fluid models. The corresponding slump rates of the printed samples with different Si3N4 to sol–silica mass ratios were all lower than 4%, and the linear shrinkage rate of all of the samples after sintering was below 20%. The fracture behavior under compressive loading of the honeycomb Si3N4 ceramics tended to be non-catastrophic fractures both before and after sintering. The compressive strengths of all of the printed samples decreased with the increase of the Si3N4 content, and the highest compressive strength of the honeycomb ceramics could reach 131.2 MPa after sintering at 1600°C, which was about 366.9% higher than that of the samples in green state prior to the sintering.  相似文献   

11.
The brittleness of Si3N4 ceramics has always limited its wide application. In this paper, Si3N4 ceramics were prepared based on foam. Combining the unique honeycomb structure of the ceramic foams and the self-toughening mechanism of Si3N4, the strengthening and toughening of Si3N4 ceramics can be further achieved by adjusting the microstructure of Si3N4 ceramic foams. The powder particles are self-assembled by particle-stabilized foaming to form a foam body with a honeycomb structure. It was pretreated at different temperatures (1450–1750°C). The microstructure evolution of foamed ceramics at different pretreatment temperatures and the conversion rate of α-Si3N4 to β-Si3N4 at different pretreatment temperatures were explored. Then the foamed ceramics with different microstructures are hot-press sintered to prepare Si3N4 dense ceramics. The effects of different microstructures of foamed ceramics on the strength and toughness of Si3N4 ceramics were analyzed. The experimental results show that the relative density of Si3N4 ceramics prepared at a particle pretreatment temperature of 1500°C is 97.8%, and its flexural strength and fracture toughness are relatively the highest, which are 1089 ± 60 MPa and 12.9 ± 1.3 MPa m1/2, respectively. Compared with the traditional powder hot-pressing sintering, the improvement is 21% and 33%, respectively. It is shown that this method of preparing Si3N4 ceramics based on foam has the potential to strengthen and toughen Si3N4 ceramics.  相似文献   

12.
Trimethylsilyl-substituted polysilazanes were designed and successfully synthesized. They were used to fabricate high-purity stoichiometric Si3N4 ceramics through pyrolysis process. Trimethylsilyl groups improved the stability of polysilazanes and easily escaped during pyrolysis, which effectively reduced oxygen and carbon content in the final polymer-derived Si3N4. The C content of Si3N4 ceramic was below 0.06 wt%, and the O content was below 1.2 wt%. The Si3N4 ceramics remained amorphous up to 1400°C, yet they were completely transformed into α-Si3N4 at 1500°C. Synergistic effect from low oxygen and carbon content contributed to highly stable amorphous state of Si3N4 till high temperatures. This amorphous Si3N4 ceramics could be used in cutting-edge technology where high purity is compulsory.  相似文献   

13.
Si3N4 ceramic substrates serving as heat dissipater and supporting component are required to have excellent thermal and mechanical properties. To prepare Si3N4 with desirable properties, a novel two-step gas-pressure sintering route including a pre-sintering step followed by a high-temperature sintering step was devised. The effects of pre-sintering temperature (1500 – 1600 °C) on the phase transformation, microstructure, thermal and mechanical properties of the samples were studied. The pre-sintering temperature played an important role in adjusting the Si3N4 particles’ rearrangement and α→β transformation rate. Furthermore, the densification process for the Si3N4 ceramics prepared via the two-step gas-pressure sintering was revealed. After sintered at 1525 °C for 3 h followed by a high-temperature sintering at 1850 °C for another 3 h, the prepared Si3N4 compact with a bimodal microstructure presented the highest thermal conductivity and flexural strength of 79.42 W·m?1·K?1 and 801 MPa, respectively, which holds great application prospects as ceramic substrates.  相似文献   

14.
A flexible method is presented, which enables the fabrication of porous as well as dense Si3N4/nano-SiC components by using Si3N4 powder and a preceramic polymer (polycarbosilazane) as alternative ceramic forming binder. The SiCN polymer benefits consolidation as well as shaping of the green body and partially fills the interstices between the Si3N4 particles. Cross-linking of the precursor at 300 °C increases the mechanical stability of the green bodies and facilitates near net shape machining. At first, pyrolysis leads to porous ceramic bodies. Finally, subsequent gas pressure sintering results in dense Si3N4/nano-SiC ceramics. Due to the high ceramic yield of the polycarbosilazane binder, the shrinkage during sintering is significantly reduced from 20 to 15 lin.%. Investigations of the sintered ceramics reveal, that the microstructure of the Si3N4 ceramic contains approx. 6 vol.% nano-scaled SiC segregations, which are located both at the grain boundaries and as inclusions in the Si3N4 grains.  相似文献   

15.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

16.
Mesoporous SiVN(O) ceramics were prepared from a mixture consisting of VO(acac)2-modified perhydropolysilazane and polystyrene. The resulting amorphous single-phase SiVN(O) ceramics remained amorphous in nitrogen atmosphere up to 1400 °C. The as-prepared materials consist of nanoscaled vanadium nitride dispersed in amorphous Si3N4; exposure to 1600 °C leads to the crystallization of VN and Si3N4. The specific surface area (SSA) and the pore size of the SiVN(O)-based ceramics can be easily controlled by the temperature of thermal treatment and by the amount of polystyrene. The average pore size of the prepared SiVN(O) ceramics was 4–10 nm and their largest SSA values, 642 and 506 m2/g, were achieved upon ammonolysis at 800 and 1000 °C, respectively. The combination of metal-modified single-source precursors and encapsulated porogens provides a convenient one-pot synthesis process to prepare mesoporous ceramic nanocomposites with controllable phase compositions and morphology.  相似文献   

17.
Crystallized Lu–Si–O–N phases were believed to be the grain‐boundary (GB) phases that might provide Si3N4 with excellent high‐temperature mechanical properties. However, little is known about the intrinsic properties, as well as the synthesis, of the Lu–Si–O–N ceramics. This work reveals the reaction paths of heating Lu2O3, SiO2, and Si3N4 powder mixtures (with the stoichiometry of 4:0.96:1) from room temperature to 1600°C. Thereafter, dense Lu4Si2O7N2 samples are synthesized by in situ reaction/hot‐pressing method, and the mechanical properties at room temperature and elevated temperatures are reported for the first time. The Lu4Si2O7N2 samples show significant high‐temperature mechanical properties, such as the elastic stiffness remains 77% from room temperature to 1500°C; and bending strength keeps 93% from room temperature to 1400°C. The present results shine a light on Lu4Si2O7N2 as a promising target GB phase for the optimization of high‐temperature mechanical properties of Si3N4.  相似文献   

18.
《Ceramics International》2019,45(12):15128-15133
In this study, highly dense Si3N4 ceramics with excellent mechanical properties were fabricated using Mg2Si as a sintering additive by plasma-activated sintering at 1400–1500 °C. The effects of the sintering temperature and content of Mg2Si on the densification, microstructures, and mechanical properties of the Si3N4 ceramics were investigated. The mechanism responsible for the effect of Mg2Si in the promotion of the sinterability of Si3N4 is discussed. The results showed that the addition of Mg2Si could effectively remove the oxide layers on the Si3N4 particles and form a liquid phase during the sintering, promoting the densification and phase transition of the Si3N4 ceramics. The Si3N4 ceramic sintered at 1450 °C with 6.0 wt% of Mg2Si exhibited the maximum strength of 1050 MPa.  相似文献   

19.
Here we report on bulk Si–Al–O–C ceramics produced by pyrolysis of commercial poly(methylsilsesquioxane) precursors. Prior to the pyrolysis the precursors were cross-linked with a catalyst, or modified by the sol-gel-technique with an Al-containing alkoxide compound, namely alumatrane. This particular procedure yields amorphous ceramics with various compositions (Si1.00O1.60C0.80, Si1.00Al0.04O1.70C0.48, Si1.00Al0.07O1.80C0.49, and Si1.00Al0.11O1.90C0.49) after thermal decomposition at 1100 °C in Ar depending on the amount of Al-alkoxide used in the polymer reaction synthesis. The as-produced ceramics are amorphous and remain so up to 1300 °C. Phase separation accompanied by densification (1300–1500 °C) and formation of mullite at T > 1600 °C are the stages during heat-treatment. Bulk SiAlOC ceramics are characterized in terms of microstructure and crystallization in the temperature regime ranging from 1100 to 1700 °C. Aluminum-free SiOC forms SiC along with cracking of the bulk compacts. In contrast, the presence of Al in the SiOC matrix forms SiC and mullite and prevents micro cracking at elevated temperatures due to transient viscous sintering. The nano-crystals formed are embedded in an amorphous Si(Al)OC matrix in both cases. Potential application of polysiloxane derived SiOC ceramic in the field of ceramic micro electro mechanical systems (MEMS) is reported.  相似文献   

20.
Porous SiCN ceramics were successfully fabricated by pyrolysis of a kind of polysilazane. The effects of annealing temperature on the microstructure evolution, direct-current electrical conductivity, dielectric properties, and microwave absorption properties of SiCN in the frequency range 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, SiC, Si3N4 and free carbon nanodomains are gradually formed in the SiCN. Both the SiC and free carbon nanodomains lead to the increases of the complex relative permittivity and loss tangent of SiCN. With the increase of the annealing temperature, the average real permittivity, imaginary permittivity and loss tangent increase from 4.4, 0.2 and 0.05 to 13.8, 6.3 and 0.46, respectively. The minimum reflection coefficient and the frequency bandwidth below −10 dB for SiCN annealed at 1500 °C are −53 dB and 3.02 GHz, indicating good microwave absorption properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号