首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用所开发的微观元胞自动机模型,耦合热力学模型计算获得的凝固路径,将浓度分布、温降与晶体生长相结合,模拟了亚共晶球墨铸铁(Fe-4wt.%C合金)离异共晶组织生长过程。结果表明,奥氏体与石墨生长相互促进,奥氏体晶粒快速包裹石墨,生长形态由枝晶状转为团簇状,石墨晶粒最终孤立分布于奥氏体基体中。等温下仅依靠溶质扩散的奥氏体与石墨生长速度略低于温降和溶质扩散共同作用下数值。二者生长速度随熔体初始过冷度增大均增快;随冷却速率增加均呈线性增长,增幅大致相同。本计算参数范围内,冷却速率对石墨生长速度的影响强度大于熔体初始过冷度。所预测的石墨平均半径与文献实验值相符。研究结果可为控制球墨铸铁凝固组织形貌及性能提供依据。  相似文献   

2.
 宽淬透性带和大尺寸TiN析出物严重危害20CrMnTi齿轮钢的产品质量,其控制的关键基础是掌握连铸过程中凝固组织演变行为机理。传统高温激光共聚焦扫描显微镜(HT-CSLM)原位观察研究通常将糊状区冷却速率设定为固定值,这不能有效反映连铸凝固过程中冷却速率的变化。为此,以国内某钢厂20CrMnTi 160 mm×160 mm小方坯为研究对象,首先通过二维切片凝固传热计算,确定内弧表面下方20、40、60 mm位置处糊状区的热历程、瞬态与平均冷却速率,进而设计HT-CSLM试验升温与降温方案。然后,开展这些位置处糊状区瞬态与平均冷却速率条件下HT-CSLM试验,研究揭示不同冷却条件下20CrMnTi的凝固过程、δ晶粒生长动力学和包晶相变机制。最后,通过电子探针分析(EPMA),考察冷却条件对凝固组织尺寸的影响规律。结果表明,由于凝固潜热的补偿,内弧皮下20、40、60 mm位置处初始凝固阶段冷却速率较小,凝固中后期逐渐增大,且越深入方坯内部越显著。这些位置处的平均冷却速率分别为102.81、44.63和34.93 ℃/min。δ晶粒率先从钢液中析出,其平均生长速率随着冷却速率的提升而增大。在瞬态冷却速率条件下,随着凝固的进行,瞬时生长速率呈增大的趋势,但是在平均冷却速率条件下瞬时生长速率则略微降低。这是因为在瞬态冷却速率条件下,糊状区冷却速率由慢至快,不断补偿了凝固潜热,同时初始形核数量少,生长空间大,溶质过冷度的影响相对较弱。当熔体温度降低至包晶相变临界温度时,δ晶粒快速转变为γ晶粒,即发生块状转变,导致固相率迅速增加,且伴随有部分γ晶粒快速聚合。整体上讲,包晶相变临界温度随着冷却速率的增大而降低,但是也受溶质初始含量的影响。此后,剩余液相向γ相转变,直至完全凝固。晶粒半径随着冷却速率的提升而减小,且在平均冷却速率条件下比瞬态冷却速率条件更小,这取决于初始凝固阶段的形核数量。  相似文献   

3.
对近共晶球墨铸铁大试块中心的冷却曲线变化进行了分析,通过显微组织观察,给出蠕虫状石墨析出倾向。观察了低于共晶温度后的整个连续凝固过程:1)液态下初生石墨形核;2)奥氏体枝晶包围初生粒子的初始共晶反应过程;3)CHG晶粒大量形核和长大,以及第二相粒子的形核和长大,随后第二相粒子形成球状石墨共晶晶粒。共晶反应时,由于蠕虫状石墨的析出,再辉最大值首先增大,然后又减小。最有意义的是观察了由CHG影响的试块体积和由TA样杯检测的再辉之间的关系。  相似文献   

4.
采用激光共聚焦显微镜对60Cr13马氏体不锈钢进行冷却速率为5~60℃/min的凝固试验,并使用金相显微镜对二次枝晶间距、碳化物析出形态进行观察,采用图像处理软件对共晶莱氏体的面积比进行测量。结果表明,与Thermo-Calc计算的热力学平衡状态不同,凝固过程中并未发现液相中析出铁素体相及随后铁素体相与液相形成奥氏体相的包晶反应,而是直接从液相析出奥氏体相,在奥氏体逐渐长大的同时排出富溶质液相,在凝固未期,富溶质液相发生共晶转变,形成莱氏体;二次枝晶间距与冷却速率存在y=402x-0.58关系。另外,随冷却速率的提高,共晶莱氏体的尺寸逐渐减小,数量逐渐增加,整体面积占比逐渐减小。  相似文献   

5.
在同时考虑传热、流动和溶质扩散基础上建立了预测铁素体不锈钢多元合金凝固组织的3D CAFE模型,揭示了430不锈钢凝固过程中温度、固相率及晶粒形貌的变化规律.模型中采用高斯分布描述形核密度与过冷度的关系,应用KGT模型描述枝晶的生长过程.根据Fe-C-17% Cr平衡相图确定了430不锈钢的凝固路径,在考虑凝固收缩的基础上预测了铸锭的疏松和缩孔分布.组织模拟结果与实际铸锭基本一致,二者的温度变化和组织结构特征也基本吻合.   相似文献   

6.
低合金化铝合金的铸态晶粒往往存在粗晶比例高、内外晶粒尺寸分布不均等问题。在晶粒细化剂添加量不变的前提下,通过改变熔体Ti含量的方式,研究溶质Ti含量对Al-5Ti-1B晶粒细化剂细晶效果的影响。采用试验和计算相结合的方式,利用荧光光谱仪测量熔体在保温炉和铸造流槽的元素变化,对铸锭低倍组织的宏观及微观组织偏光观察,通过热力学计算确定溶质Ti含量、生长限制因子Q、α-Al形核温度及其过冷度,揭示溶质Ti对α-Al的形核率和生长率的作用机制。研究表明:低Ti样品的低倍组织中存在大量粗晶和少量羽毛晶,晶粒尺寸呈现内高外低的趋势,分布区间为750~2500μm;高Ti样品低倍组织细小弥散,内外晶粒分布均匀,呈等轴晶,尺寸区间在100~120μm。此外,计算结果显示,当熔体中溶质Ti含量由1.52×10^(-4)%增长至1.07×10^(-2)%时,TiB_(2)/α-Al界面能逐渐增大,润湿角由约180°降低至近似0°,α-Al的瞬态形核率随之提升数十个数量级。同时,通过降低形核过冷度和提高生长限制因子,更高的溶质Ti含量有助于降低α-Al的生长速率。为充分发挥晶粒细化剂的细晶效果,熔铸工序中溶质Ti含量建议不低于1.07×10^(-2)%。  相似文献   

7.
根据凝固过程中溶质元素偏析和扩散的基本规律,建立了凝固过程中氧化钛的长大模型。计算结果表明,冷却速率对凝固过程中氧化钛的析出和长大有重要影响:冷却速率越小,氧化钛长得越大。凝固前初始氧化钛越小,在凝固过程中氧化钛越容易长大。此外,可以根据冷却速率和凝固后氧化钛的尺寸判断氧化钛是凝固前形成的一次氧化物还是凝固过程中产生的二次氧化物。  相似文献   

8.
冷却速率对T91钢相变过程及组织的影响   总被引:1,自引:0,他引:1  
利用DIL805A/D高精度差分膨胀仪,通过线膨胀行为测量获得相关动力学信息,结合冷却后的组织特征,研究了T91钢不同冷却速度(2~6000℃/min)下过冷奥氏体的相变过程和产物,确定了该钢组织转变的临界冷却速度以及淬火速率对马氏体转变点及组织的影响,绘制了连续冷却转变曲线。研究表明:T91钢的连续冷却过程中只存在铁素体和马氏体转变区,10℃/min为马氏体转变的临界冷却速度。不同淬火速率对T91钢马氏体开始转变温度有较大的影响,它不同于随冷速增加而相变点升高的经典理论。淬火速率通过碳原子气团、内应力的形成来影响过冷奥氏体状态,从而影响相变点;随淬火速度的增加,过冷奥氏体转变后的组织呈细化趋势。  相似文献   

9.
用Bridgm an 定向凝固技术制取了稀土变质共晶铸铁不同石墨形态时的液-固平界面试样。观察结果表明,稀土变质铸铁共晶凝固过程中,石墨相不论形态如何均为领先相;石墨与奥氏体共晶有共生生长和离异生长两种生长方式。在共生生长情况下,奥氏体紧贴石墨片两侧协同生长,形成锯齿状的液-固界面结构;在离异生长情况下,石墨相单独在液相中析出并充分长大,随后被奥氏体包围,液-固界面形态主要取决于奥氏体-液相界面的稳定性。分析表明,稀土在石墨-液相界面的富集是导致石墨-奥氏体共晶离异生长的主要原因。  相似文献   

10.
夹杂物在钢液凝固前沿行为的原位动态观察   总被引:1,自引:0,他引:1  
通过激光扫描共焦显微镜原位动态观察了304奥氏体不锈钢液凝固过程中,钢中氧化铝夹杂被凝固前沿推动/捕捉,最后分布于奥氏体晶界/晶内的情况.在实验中发现,当冷却速率为5 K/s时,直径为7 μm的夹杂物和直径为10 μm的夹杂物被凝固前沿捕捉进入奥氏体晶粒内部.当冷却速率为0.5 K/s时,直径为5 μm的夹杂物被凝固前沿推动,凝固结束时位于奥氏体晶界.最后通过SAS Ⅱ模型,计算了不同冷却速率下夹杂物被凝固前沿推动/捕捉的临界半径,计算结果与观察到的结果吻合较好,说明根据力学平衡原理建立的SAS Ⅱ模型也可以很好地预测钢液凝固过程中夹杂物被凝固前沿推动/捕捉的临界半径.  相似文献   

11.
An aluminum alloy was cast by a laboratory scale horizontal twin roll caster with or without melt conditioning by the intensive shearing prior to solidification and then examined by high-resolution electron microscopy. The combined twin roll casting process with solidification formed channels and induced centerline segregation without the conditioning. In comparison, the melt conditioning minimized the severe segregation on the surface as well as at the centerline. Furthermore, large amounts of solute elements were uniformly distributed along grain boundaries or interdendritic regions. Analytical electron microscopy detected a fine oxide particle or a fragmented aluminum particle particularly at the center region of one nucleated aluminum grain. In addition, large oxide particles of about 1 to 5 μm nucleated aluminum grains easily due to low undercooling necessary for the heterogeneous nucleation, whereas small oxides with the size of about 100 to 200 nm requiring large undercooling were pushed along the grain boundaries instead of contributing to the nucleation. The enhanced nucleation of aluminum grains and well-distributed solute atoms in the melt by the melt conditioning resulted in the minimization of macro- and micro-segregations and the formation of a uniform microstructure.  相似文献   

12.
GCr15轴承钢在连铸凝固过程中的组织生长与溶质偏析是碳化物液析的重要诱因,成为产品质量提升的关键.为此,针对国内某钢厂240 mm×240 mm GCr15轴承钢的连铸过程,选取方坯表面下方40、80和120 mm位置处的坯样为研究对象,首先建立二维凝固传热模型,结合红外测温试验,求解它们在糊状区的平均冷却速率,然后...  相似文献   

13.
Phase selection and microstructure evolution in nonequilibrium solidification of ternary eutectic Fe40Ni40B20 alloy have been studied. It is shown that γ-(Fe, Ni) and (Fe, Ni)3B prevail in all the as-solidified samples. No metastable phase has been found in the deeply undercooled samples. This is explained as resulting from the size effect of undercooled solidification. At small and medium undercoolings, the dendrite γ-(Fe, Ni) appears as the leading phase. This is ascribed to the existence of the skewed coupled growth zone in FeNiB alloy. With increasing undercooling, the amount of dendrites first increases and then decreases, accompanied by a transition from regular eutectic to anomalous eutectic. The formation mechanisms of the anomalous eutectics are discussed. Two kinds of microstructure refinement are found with increasing undercooling in a natural or water cooling condition. However, for melts with the same undercooling, the as-solidified microstructure refines first, and then coarsens with an increasing cooling rate. The experimental results show that the nanostructure eutectic cell has been obtained in the case of Ga-In alloy bath cooling with an initial melt undercooling of approximately 50 K (50 °C).  相似文献   

14.
The effect of La addition (0–0.30 wt%) on the microstructure and hardness of rheological squeeze casting brass alloys was experimentally investigated. The rheological squeeze casting process is improved by controlling the wall surface crystals and melt flow rate to realise the preparation of semi-solid melt with flow, and a brass alloy workpiece with La is produced. The microstructure and properties of the brass alloy samples were investigated using metallography, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and hardness testing. The results indicate that the hardness of the rheological squeeze casting brass alloy is increased by 20.4% from 108 to 130 HBW with an increase in the La content from 0 to 0.30 wt%. The microstructural analysis results show that La significantly refines the primary α-phase grains, and the main mechanism is the constitutional undercooling and heterogeneous nucleation caused by the La enrichment in the front of the solid–liquid interface. The squeeze pressure promotes undercooling, which improves the nucleation rate and affects the solute diffusion and nucleus growth. The dual effects of these two aspects aggravate the grain refinement process, consequently increasing the number of grain boundaries and improving the hardness of the brass alloy.  相似文献   

15.
This article describes in detail the effect of cooling rate on the microstructure of a low-carbon Fe-12 pct Cr alloy. The alloy was prepared using a relatively simple technique, i.e., rapid cooling of the melt in a copper wedge mold. The dependence of microstructure on the cooling rate (∼40 to 105 K/s) has been determined by X-ray diffraction (XRD), microhardness measurement, optical microscopy (OM), and transmission electron microscopy (TEM). It has been found that the matrix structure over a large cooling rate range is composed of columnar ferrite grains, the size of which decreases with increasing cooling rate. Precipitation of second phases has been observed at either the ferrite grain boundaries or within the ferrite grains. The former takes place along the entire wedge sample, whereas the latter characterizes a region 12 mm away from the tip of the wedge sample. The essential structure of the grain boundary precipitates was identified as martensite, which is a transformation product of austenite precipitated at high temperatures. Retained austenite was identified at the tip region as isolated particles (<4 μm). The precipitates within the ferrite grains appeared as planar colonies consisting of two sets of needles. The density of these precipitates increases with increasing the cooling rate while their size decreases. Characteristic precipitate-free zones (PFZs) at the ferrite grain boundaries were observed and are discussed.  相似文献   

16.
17.
采用石墨质蛇形通道制备半固态A380铝合金浆料,并研究浆料制备过程中浆料组织的演变.结果显示,合金熔体在蛇形通道内发生一次凝固,在其通道内壁的激冷和异质形核作用下形成大量的初生自由晶,半固态浆料的剩余液相在收集坩埚内发生二次凝固形成二次非枝晶.初生晶粒的游离模型表明一部分初生自由晶直接生长为球晶,其他部分则成长为枝晶,枝晶在‘自搅拌’的作用下发生缩颈和熔断,通过‘自旋转’在蛇形通道内得到初步球化和熟化.二次凝固形成的二次非枝晶在收集坩埚内得到初步球化和熟化,同时初生晶粒在收集坩埚内得到进一步球化、熟化和均匀分布.   相似文献   

18.
铸坯表层异常长大的奥氏体晶粒是产生横裂纹的重要原因之一,研究冷却过程对其生长行为的影响对科学制定连铸工艺、降低铸坯裂纹敏感性有重要意义。采用原创连铸坯凝固过程热模拟方法,再现了EH40低碳船板钢板坯的凝固过程,观察在传统板坯连铸条件下,2种结晶器冷却强度对铸坯表层奥氏体晶粒长大行为的影响。结果表明,在结晶器冷却阶段,热模拟坯表层5 mm的绝大多数奥氏体晶粒短轴尺寸均不超过0.5 mm,但已出现粗大晶粒,且强冷条件下奥氏体晶粒尺寸平均值和极大值均更大,分别为弱冷条件下的2.5倍和2.0倍。在足辊区到矫直点区间,表层奥氏体晶粒生长非常缓慢,平均尺寸仍未超过0.5 mm。矫直点处,结晶器强冷热模拟坯表层20 mm的晶粒短轴最大尺寸为2.2 mm,为弱冷条件下的1.7倍。综上,奥氏体晶粒在连铸不同阶段表现为不同的生长行为,且采用结晶器弱冷更有利于EH40钢板坯获得相对细小的表层奥氏体晶粒。  相似文献   

19.
Austenite grain growth does not only play an important role in determining the mechanical properties of steel, but certain surface defects encountered in the continuous casting industry have also been attributed to the formation of large austenite grains. Earlier research has seen innovative experimentation, the development of metallographic techniques to determine austenite grain size and the building of mathematical models to simulate the conditions pertaining to austenite grain growth during the continuous casting of steel. Oscillation marks and depressions in the meniscus region of the continuously casting mold lead to retarded cooling of the strand surface, which in turn results in the formation of coarse austenite grains, but little is known about the mechanism and rate of formation of these large austenite grains. Relevant earlier research will be briefly reviewed to put into context our recent in situ observations of the delta-ferrite to austenite phase transition. We have confirmed earlier evidence that very large delta-ferrite grains are formed very quickly in the single-phase region and that these large delta-ferrite grains are transformed to large austenite grains at low cooling rates. At the higher cooling rates relevant to the early stages of the solidification of steel in a continuously cast mold, delta-ferrite transforms to austenite by an apparently massive type of transformation mechanism. Large austenite grains then form very quickly from this massive type of microstructure and on further cooling, austenite transforms to thin ferrite allotriomorphs on austenite grain boundaries, followed by Widmanstätten plate growth, with almost no regard to the cooling rate. This observation is important because it is now well established that the presence of a thin ferrite film on austenite grain boundaries is the main cause of reduction in hot ductility. Moreover, this reduction in ductility is exacerbated by the presence of large austenite grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号