首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 316 毫秒
1.
朱军  徐翌童  郭梅  俞娟  曹欢 《矿冶工程》2022,42(2):80-84
采用复合盐焙烧-水浸工艺从锂云母中提取锂、铷、铯,研究了焙烧工艺参数及浸出工艺参数对锂、铷、铯浸出率的影响。结果表明,锂云母精矿焙烧时,复合盐焙烧效果优于单一盐添加剂,CaCl2+Na2CO3组合添加剂具有焙烧时氯气排放少、焙烧矿浸出效果好等优点。从锂云母中回收锂、铷、铯,较佳的焙烧-浸出工艺条件为: CaCl2+Na2CO3组合为焙烧添加剂,锂云母精矿∶CaCl2∶Na2CO3(质量比)=1∶0.5∶0.2,锂云母精矿焙烧温度900 ℃、焙烧时间2 h,对焙烧矿进行室温水浸,浸出时间1 h、液固比2∶1,此时锂、铷、铯浸出率分别为86.64%、92.58%、85.37%。含锂浸出液经2次调节pH值净化除钙,升温至95 ℃后加入饱和Na2CO3溶液,结晶得到碳酸锂,样品纯度为99.08%,产品纯度及杂质含量达到一级碳酸锂标准。沉锂母液采用溶剂萃取法分离铷、铯,铯萃取率达到99%以上,铷洗脱率达到96%左右。  相似文献   

2.
采用焙烧-水浸联合工艺从某含铷和锂的云母粗精矿中浸出铷和锂,主要考察了氯化物添加剂用量、焙烧温度、焙烧时间、浸出温度、浸出时间等因素对铷和锂浸出效果的影响。确定的最佳工艺参数为:氯化物添加剂用量为原矿质量的90%、焙烧时间1.5 h、焙烧温度950℃、浸出温度30℃(室温)、浸出时间1.5 h,在最佳工艺参数条件下,铷浸出率大于95%,锂浸出率大于90%,浸出效果较好。   相似文献   

3.
这是一篇冶金工程领域的文章。以江西某地锂云母矿为原料,通过对焙烧-浸出、拌酸熟化、直接酸浸出、碱压煮法等工艺进行探索实验,最终采用加硫酸盐焙烧-水浸法从锂云母矿中提锂。同时研究了焙烧温度、焙烧时间、添加剂种类、添加剂用量、浸出液固比、浸出温度等条件对锂浸出率影响,结果显示,焙烧温度对锂浸出率影响较大,在适当的焙烧温度范围内,锂的浸出效果较好。向锂云母矿中加入40%硫酸钾、20%硫酸钠、20%氧化钙,在900℃下焙烧1 h,焙砂按液固比1∶1在常温下浸出1 h,锂浸出率可达94.87%。这说明采用硫酸盐作添加剂来焙烧提锂效果较好,通过研究焙烧机理可知,加入硫酸盐经高温焙烧后,矿物结构被重构,矿中钠钾离子与锂云母中的锂离子置换,使其从难溶性铝硅酸盐矿物中分离,生成可溶性的硫酸锂,从而经水浸后进入溶液中。  相似文献   

4.
赣州某选钨尾矿Li_2O品位为0.34%,锂主要赋存在云母矿物中。为确定锂的回收利用工艺,对有代表性试样进行了浮选工艺及浮选锂精矿焙烧—浸出工艺条件研究。结果表明,采用1粗3精3扫、中矿顺序返回闭路浮选流程处理试验原料,可获得Li_2O品位为1.18%、回收率为58.69%的锂精矿;浮选锂精矿与氯化剂(氯化钙与氯化钠的质量配合比为1∶1)按质量比1∶0.6混合后在900℃焙烧1 h,焙烧产物在液固质量比为1.5∶1、浸出温度为50℃、浸出时间为2 h情况下水浸,锂浸出率达到98.80%。因此,浮选—氯化焙烧—浸出工艺可实现赣州某选钨尾矿中锂的综合回收。  相似文献   

5.
采用硫酸钠、硫酸钾混合硫酸盐焙烧中低品位锂瓷土(Li2O%=1.86%),并采取了水浸法提取焙烧产物中的锂,研究焙烧过程硫酸盐/锂瓷土配比、焙烧温度、时间等工艺条件对后续锂浸出率的影响。结果表明:在850 ℃焙烧1 h、锂瓷土∶硫酸钾∶硫酸钠最优配比为1∶0.35∶0.15,锂浸出率达到95%,并且可以有效避免杂质铝进入浸出液;硫酸盐焙烧过程中,锂瓷土先部分转变成KAlSi3O8,再转变成KAlSiO6相及SiO2相。  相似文献   

6.
三元正极材料废粉氢还原-水浸提锂过程典型杂质的影响   总被引:2,自引:0,他引:2  
对含杂三元正极废粉和纯三元正极粉进行了氢还原-水浸提锂工艺对比试验,采用XRD、SEM-EDS和红外光谱等检测手段对反应产物进行表征分析。结果表明,纯三元正极粉较佳焙烧条件为: 焙烧温度500 ℃、焙烧时间30 min、氢气流量100 mL/min,此条件下所得焙烧料在浸出液固比10∶1、温度90 ℃、时间120 min条件下浸出,锂浸出率为98.71%。含杂三元正极废粉较佳焙烧条件为: 焙烧温度500 ℃、焙烧时间90 min、氢气流量100 mL/min,此条件下所得焙烧料在相同条件下水浸时,锂浸出率为84.74%。含杂三元正极废粉锂浸出率明显低于纯三元正极粉,原因是含杂三元正极废粉中存在F、P、Al等杂质,在还原焙烧过程中部分锂与杂质成分反应,生成水溶性差的LiF、Li3PO4和LiAlO2,进而降低了锂浸出率。  相似文献   

7.
以废旧三元锂电池正极材料为原料,经湿法浸出、化学沉淀、萃取分离等工序,有效回收了废旧三元锂电池正极材料中的镍、钴和锂。首先考察了H2SO4和H2O2体系各因素对浸出效果的影响,通过单因素条件试验结果分析,确定了浸出最佳浸出条件为:浸出温度90℃,酸料比2:1,双氧水/料(mL/g)1.33,液固比(mL/g)10:1,浸出时间1h。在此条件下渣率低,镍、钴、锰和锂浸出率都能达到99%以上。浸出液用30%的NaOH溶液进行中和沉淀,时间2h,温度90℃,终点pH值3.7,除铁后液中铁的含量小于0.005g/L,镍、钴损失1%以下。除铁后液经P204萃取除锰-P507镍钴分离- P204萃镍制备镍、钴产品,萃余后的硫酸锂溶液经浓缩后再进行碳酸钠沉锂。  相似文献   

8.
全球“碳中和”背景下,清洁能源的需求高涨,锂已成为战略资源。黏土型锂矿储量大且未大规模开发利用,未来将成为锂产品供应的重要来源。以氧化锂0.53%的黏土型锂矿为试样,进行了氯化焙烧—酸浸试验。结果表明,氯化钙用量18%、焦炭用量5%、焙烧温度800℃、焙烧60 min、10%硫酸浓度作浸出剂、液固比3:1、浸出时间120 min条件下,获得了锂浸出率92.16%的技术指标。通过氯化焙烧,黏土型锂矿中的铝硅酸盐矿物转化为氯硅铝钙石,利于锂的浸出;焙烧温度高于800℃时,氯硅铝钙石逐渐分解,硅灰石与硅酸铝钙生成,阻碍了锂的浸出。  相似文献   

9.
锂被称为21世纪的战略金属,而锂云母矿是目前提锂的主要锂矿物之一。本文章对含铷、铯的锂云母矿进行了多种焙烧方式探索,研究表明,硫酸盐焙烧法对锂浸出效果明显,硫酸钠+硫酸钙组合对锂的浸出率为92.53%,氯盐焙烧法对铷、铯的浸出效果优异,氯化钠+氯化钙组合其铷、铯浸出率分别为96.13%,94.86%。进一步试验表明,焙烧添加剂中Na~+对锂的浸出有积极效果,Ca~(2+)对铷、铯的浸出有提升作用。综合试验结果,以SC21(碱金属盐混合物)为焙烧添加剂,锂云母矿:SC21(质量比)=1:0.7,焙烧温度为880℃,焙烧时间为45 min,此时锂、铷、铯的浸出率分别为:94.52%,92.03%及93.56%。  相似文献   

10.
氯化焙烧法处理宜春锂云母矿提取锂钾的研究   总被引:2,自引:0,他引:2  
采用氯气作氯化剂氯化焙烧江西宜春锂云母矿提取锂、钾, 研究了氯化焙烧温度、时间及添加剂对锂云母氯化效率的影响, 并采用XRD对焙烧后物料进行了物相分析。结果表明: 以氯气处理锂云母, 氯化焙烧温度为850 ℃, 时间为3 h时, 锂、钾的提取率分别为92.49%和71.06%; XRD结果表明, 焙烧后物料主要物相为LiAl(SiO3)2、SiO2、KCl、NaCl、K(Si3Al)O8。当添加与锂云母质量比为0.7的氧化钙后, 物料的熔点明显提高, 900 ℃下氯化焙烧30 min时, 锂的浸出率为92.5%, 钾的提取率提高到96.7%。添加氧化钙焙烧后浸出渣主要物相为Ca0.65Na0.35(Al1.65Si2.35O8)、CaF2、SiO2。  相似文献   

11.
某钴铜精矿硫酸化焙烧试验研究   总被引:1,自引:0,他引:1  
刘忠胜  邢飞  段英楠 《矿冶工程》2014,34(5):108-112
以吉林省某铜钴矿为原料, 经浮选得到混合精矿试料, 采用硫酸化焙烧-两段浸出工艺回收铜钴。重点探讨了焙烧助剂添加方式、用量、试料粒度对铜钴镍浸出率的影响。焙烧助剂采用6%硫酸钠, 以液体形式加入, 焙烧温度为610 ℃, 焙烧时间80 min, 一段室温水浸出, 浸出时间60 min, 二段10%硫酸浸出, 浸出温度80 ℃, 浸出时间60 min, 浸出固液比为1+4时, 钴浸出率86.42%, 铜浸出率98.26%, 镍浸出率60.01%。  相似文献   

12.
共生铅-锌混合精矿硫酸化焙烧分离铅、锌研究   总被引:1,自引:0,他引:1  
采用硫酸化焙烧工艺对某共生铅-锌混合精矿进行了铅锌分离试验研究。在硫酸化焙烧过程中, 硫化铅和硫化锌与氧气反应生成硫酸铅和硫酸锌; 利用硫酸锌易溶于水、硫酸铅不溶于水的特性, 采用水浸工艺对焙烧产品进行铅、锌分离。结果表明: 在焙烧物料球团直径小于8.0 mm、空气流量1.0 L/min、焙烧温度650 ℃、焙烧时间2.5 h、硫酸钠用量2.4%、硫酸钙用量3.6%、常温常压下浸出1.5 h、浸出液固比1.5∶1, 得到了锌浸出率96.05%~96.68%、平均96.35%, 铅渣品位56.89%~57.25%、平均57.11%的指标, 铅、锌分离效果明显。  相似文献   

13.
以V2O5含量0.51%的某石煤钒矿石为试验原料,采用焙烧-酸浸工艺对其进行了系统的试验研究。分别考察了焙烧和浸出工艺参数对矿石中V2O5浸出率的影响。试验结果显示,在入料粒度-0.074 mm粒级含量占63.80%、焙烧温度800℃、焙烧时间2 h的焙烧条件及浸出温度70℃、H2SO4用量(H2SO4与浸出试样的质量比)12%、液固比2:1、浸出时间2 h的浸出条件下,V2O5的浸出率可达到70.81%。研究结果为该类V2O5含量未达到工业品位的石煤钒矿石的开发利用提供了参考。   相似文献   

14.
湖北某高钙低品位含钒石煤钠化焙烧研究   总被引:2,自引:0,他引:2  
对湖北某高钙低品位含钒石煤进行了NaCl、Na2SO4和两者复配焙烧及水浸-稀酸浸试验。添加单一NaCl焙烧时,过多的游离氧化钙容易与钒结合生成不溶于水的钒酸钙,影响钒的水浸率;添加单一Na2SO4焙烧时,虽然可以固定钙离子,但Na2SO4用量过大,经济和环境成本较高;当NaCl和Na2SO4添加量分别为7%和16%,焙烧温度为850 ℃,焙烧时间为3 h,水浸率可提高到51.47%,总浸率可达79.81%。在复合添加剂用量较低情况下取得了较好的浸出效果,一方面源于Na2SO4对较高含量钙离子的固定作用,抑制了难溶性钒酸钙的形成;另一方面,NaCl焙烧生成了氧化性较强的气体HCl、Cl2,既有助于破坏云母晶格结构,又有助于钒的氧化转价。  相似文献   

15.
高碳镍钼矿的浸出试验研究   总被引:6,自引:2,他引:4  
采用焙烧原矿-碳酸钠浸出焙砂-硝酸浸出碱浸渣工艺对某高碳镍钼矿进行了钼、镍浸出研究, 并确定了各阶段的主要工艺参数, 原矿在550 ℃下焙烧4 h后, 进行碱浸出, 碱性浸出剂Na2CO3用量为8%、液固比为3∶1、40 ℃下浸出2 h后, 再对碱浸渣进行酸浸, 酸性浸出剂HNO3浓度为35%, 液固比为3∶1, 70 ℃下浸出2 h, Mo的总浸出率达到92.72%, Ni的浸出率达到97.18%。  相似文献   

16.
焙烧歧化-铁屑还原浸出低品位锰矿工艺研究   总被引:1,自引:1,他引:0  
舒琳  刘海燕  邹琴 《矿冶工程》2016,36(4):72-75
采用焙烧歧化-铁屑还原法对低品位锰矿进行还原浸出, 探究了一种焙烧过程不添加还原剂、反应全过程无有害气体产生的高效浸出锰的方法, 考察了焙烧温度、酸矿比、铁矿比、液固比、反应温度、反应时间对锰浸出率的影响。结果表明, 在焙烧温度700 ℃、酸矿比1.05∶1、铁矿比0.14∶1、液固比6∶1、浸出温度50 ℃下浸出2 h, 锰浸出率达到92.63%。  相似文献   

17.
以陕西某V2O5品位2.36%的含钒云母为原料,开展了悬浮氧化焙烧-硫酸浸出提钒工艺研究,考察了焙烧温度、焙烧时间、焙烧气量以及氧气浓度对V2O5浸出率的影响,采用X射线衍射、热重分析、傅里叶变换红外光谱等检测手段对焙烧前后含钒云母的结构进行了分析。研究表明,适宜的悬浮氧化焙烧工艺为:焙烧温度950 ℃、焙烧时间4 h、O2浓度35%、总气量600 mL/min,焙烧产物在硫酸用量(质量分数)20%、液固比6∶1、浸出时间3 h、浸出温度90 ℃条件下进行酸浸,V2O5浸出率可达73.34%,实现了含钒云母破晶提钒的目标。  相似文献   

18.
微细浸染金矿碱性热压预处理-硫代硫酸钠浸金   总被引:6,自引:2,他引:4  
采用碱性热压预处理-硫代硫酸盐浸出含碳质微细粒浸染型极难选原生金矿, 分别进行了原矿浸金、热压预处理以及氧化产物浸金试验, 考查了各因素对预处理脱碳、脱硫以及浸金效果的影响。试验结果表明, 在磨矿细度-0.025 mm粒级占82%, 预处理温度160 ℃、预处理时间2 h、助氧剂TW用量300 g/t、氧压1.6 MPa、pH=12的碱性热压氧化条件下以及硫代硫酸钠用量0.12 mol/L、硫酸铵用量0.075 mol/L、硫酸铜用量0.02 mol/L、pH=9、浸出时间4 h、矿浆液固比3∶1的浸出条件下, 获得了金浸出率88.76%。通过对预处理反应热力学计算, 以及绘制160 ℃下Fe-S-H2O体系Eh-pH图, 对碱性热压氧化预处理过程的机理进行了初步研究, 研究结果与试验结果一致。  相似文献   

19.
金永朋  李艳军  袁帅  刘杰 《金属矿山》2021,50(9):96-101
新疆某难处理含钒石煤中钒以极细粒分布在绢云母中,现场采用传统焙烧系统进行空白焙烧提钒,存在氧气浓度低、温度控制难等问题,最终钒浸出率仅为20%左右。为此,在充分分析原矿性质的基础上,采用自行设计的气基焙烧系统进行石煤原矿的空白焙烧试验研究,条件试验确定适宜的焙烧温度为800 ℃、焙烧时间为20 min、气体流量为400 mL/min、氧浓度为20%;对此条件下获得的焙烧样进行酸浸提钒,固定硫酸浓度30%、液固比1.25∶1、浸出时间3 h、浸出温度90 ℃,最终钒浸出率可达46.51%。研究结果表明新装置具有焙烧温度低、焙烧时间短、对矿石的选择性小、焙烧气氛精准可调等优点,可有效降低生产成本、提高生产效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号