首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用溶胶-凝胶法、化学沉淀法和光还原法合成了具有高催化活性的Z型La-SrTiO3/Ag/Ag2O异质结光催化剂。对该光催化剂进行了SEM、TEM、XRD、XPS、UV-Vis、PL和EPR的表征分析,并考察了初始亚甲基蓝(MB)浓度、pH和H2O2浓度等相关运行参数对光催化剂催化性能的影响。结果表明,成功制备的La-SrTiO3/Ag/Ag2O复合材料对光具有较大的吸光度,可以有效抑制了光致电子-空穴对的复合。该催化剂具有较高的光催化降解活性,光照120min后对30×10-6的MB降解效率可达到98%。  相似文献   

2.
以高长径比的纤维素纳米纤丝(CNF)与片层结构的氧化石墨(GO)为原料,采用乙二胺还原和液氮梯度冷冻干燥制备纤维素纳米纤丝/石墨烯(CNF/rGO)复合气凝胶,并通过红外光谱、X射线衍射、X射线光电子能谱、扫描电镜、比表面积(BET)、电化学测试仪等对其进行性能表征。结果表明,所制备的CNF/rGO复合气凝胶具有完整的三维网络结构,当CNF和GO质量比为10∶1时,复合气凝胶的平均孔径为13nm,比表面积为110.2m2/g,在电流密度为1A/g下获得的质量比电容约为156F/g。  相似文献   

3.
通过溶胶-凝胶和静电纺丝技术相结合的方法, 成功制备不同复合浓度聚乙烯吡咯烷酮(PVP)/钛酸四正丁酯(Ti(OC4H9)4)/钨酸铵(N5H37W6O24·H2O)前驱体。通过控温煅烧获得不同煅烧温度、不同复合浓度的TiO2/WO3微纳米纤维复合材料。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、场发射扫描电子显微镜(FE-SEM)和紫外-可见漫反射光谱(UV-Vis )技术对样品进行表征。以亚甲基蓝(MB)的光降解为模型反应, 研究TiO2/WO3微纳米纤维复合材料在紫外光照射下的光催化活性。结果表明, 煅烧温度500℃时, n(Ti):n(W) = 12:1形成WO3掺杂的TiO2微纳米纤维及n(Ti):n(W) = 4:1形成的TiO2/WO3复合微纳米纤维的光催化活性均高于纯TiO2。  相似文献   

4.
为克服SiO2气凝胶强度低、易破碎等缺点,通过原位溶胶-凝胶法制备纳米纤维素(CNF)增强SiO2气凝胶,并对SiO2气凝胶的化学结构、微观形貌和力学、物理性能进行表征分析,探讨了CNF对SiO2气凝胶力学性能的增强机制。结果表明:CNF独特的纳米级网络结构可增强SiO2颗粒之间的联结强度;Si-OH(960 cm-1)和Si-O-Si(1 225 cm-1、1 056 cm-1和800 cm-1)等特征吸收峰的出现表明,CNF与SiO2之间形成稳定的化学键联结;采用不同含量CNF气凝胶作为SiO2增强相均可达到增强力学性能的效果,同时仍能保持SiO2气凝胶本身质轻、高孔隙率、高比表面积等特性;当以CNF质量分数为6wt%的溶液制备气凝胶时,CNF增强SiO2气凝胶具有最优的力学性能,压缩模量和压缩强度分别为12.43 MPa和2.59 MPa。  相似文献   

5.
以棉花纤维素为模板,Zn(CH_3COO)_2·9H_2O为原料,经高温煅烧制得具有纤维素管状结构的ZnO微/纳米材料。通过调整煅烧温度,优化了催化剂的制备工艺。运用XRD、SEM、FT-IR和UV-Vis DRS对催化剂样品进行结构表征,以亚甲基蓝(MB)为目标降解物,研究了该ZnO光催化剂在紫外光照下,不同制备温度对材料光催化性能的影响。研究表明,煅烧温度850℃的样品光催化活性最佳,反应60min对MB的降解率达97%。经过4段循环,光降解率仍维持在86%以上,表明此微/纳米ZnO是一种有效稳定的光催化剂。  相似文献   

6.
负载有立方相p-型半导体Cu1.8S颗粒的TiO2纳米带制备与表征   总被引:1,自引:0,他引:1  
采用Cu2O自牺牲模板法, 以负载有立方相p-型半导体Cu2O颗粒的TiO2纳米带作为前驱物, 在水热条件下与硫脲进行反应, 制得了负载有立方相p-型半导体Cu1.8S颗粒的TiO2纳米带. 测试结果表明, 反应温度、反应时间和硫脲浓度对Cu1.8S纯度和形貌皆有影响. 若反应在较低温度(如120℃)进行, 即使反应时间达到25 h, 产物中除了生成Cu1.8S还存在未反应Cu2O; 若水热温度控制在160℃反应25 h, 当硫脲浓度为0.25 mol/L时, 负载物基本上是Cu1.8S且分散较好, 当硫脲浓度升到0.5 mol/L时, 负载物团聚严重. 对罗丹明B的光催化降解活性测试结果表明, 与纯TiO2纳米带相比, 在负载有Cu2O或Cu1.8S后光催化活性显著降低.  相似文献   

7.
将微晶纤维素溶解于NaOH-尿素的低温溶液中形成纤维素溶液, 在水浴中再生形成纳米纤维素溶液。然后将纳米纤维素溶液与TiO2(P25)混合, 并添加少量的钛酸正丁酯作为交联剂形成复合溶液。将制备得到的复合溶液通过流延法固载到玻璃片表面形成玻璃固载的TiO2/纳米纤维素复合膜。通过SEM、XRD表征了复合膜的形貌与结构。将玻璃固载的TiO2/纳米纤维素复合膜在紫外光下进行光催化降解甲基橙(MO)以评估复合膜的光催化性能, 研究了纳米TiO2含量对复合膜光催化性能的影响, 复合膜的重复使用性能以及光降解的动力学过程。结果表明: 复合膜对MO的光催化降解能力可达90%以上, 与纯TiO2粉末相当, 并重复使用3次光催化性能基本保持不变。复合膜对甲基橙的降解动力学符合一级动力学特征。当纳米TiO2相对于纤维素的质量分数为33.3%时, 光催化活性最高, 动力学速率常数为0.035 min-1。  相似文献   

8.
通过电化学法在铜片表面生长Cu(OH)2纳米线阵列,在氮气氛围下将其进行退火处理得到Cu2O纳米线阵列,然后采用电沉积法在电极上沉积Cu2O阻挡层和CeO2,制备得到Cu2O/CeO2异质结光阴极材料。利于扫描电子显微镜(SEM)、X-射线衍射(XRD)和X-射线光电子能谱(XPS)对材料的形貌和化学成分等进行表征,紫外-可见吸收光谱(UV-Vis)、线性扫描伏安法(LSV)和莫特肖特基曲线(M-S)等测试对其光电化学性能进行分析。实验数据结果表明,在0 V、RHE(可逆氢电极)下,Cu2O/CeO2光阴极的光电流密度达到-6.55 mA/cm2,相比仅Cu2O的光电流密度(-3.67 mA/cm2)提升了1.78倍。随后,通过ALD(原子层沉积)制备TiO2作为保护层,负载Pt作为析氢反应(HER)的助催化剂。最终Cu  相似文献   

9.
为了提高红磷催化剂的光催化性能, 选择剥离膨润土(EB)为载体, 将水热处理后的红磷(HRP)负载在EB上, 制得EB/HRP复合光催化剂, 并通过不同手段对催化剂进行表征。选择罗丹明B为模型污染物, 考察了EB/HRP复合光催化剂的光降解性能。结果表明, 随着EB含量的增加, EB/HRP复合光催化剂的光降解效率呈现先增加后减小的趋势, 当EB的质量分数为9%时, 复合光催化剂(EB9/HRP)表现出最强的吸附性能和光降解性能, 其降解速率常数k值为0.0641 min-1, 是HRP的2倍。另外, 经过五次循环光降解实验, EB9/HRP仍具有较高的光催化活性(96.8%)。因此, EB9/HRP复合催化剂具有较好的光催化活性和稳定性, 有望成为一种降解污染物的高效而稳定的光催化剂。  相似文献   

10.
以醋酸锌(Zn(CH3COO)2·2H2O)为锌源、硝酸银(AgNO3)为掺杂源、纤维素纳米晶体(Cellulose nanocrystal, CNC)为生物模板,通过溶胶-凝胶法结合碳化处理,制备了Ag-ZnO/生物质炭(Biochar)复合材料。采用TEM、XRD、BET、UV-Vis DRS对所制得的Ag-ZnO/Biochar复合材料进行表征。以亚甲基蓝(MB)为模型污染物,评价Ag-ZnO/Biochar复合材料在可见光源照射下的光催化性能,进一步阐明其光催化机制。结果表明:碳化后纳米ZnO仍保持良好的分散性,球形Ag纳米粒子均匀分散在ZnO表面,形成Ag-ZnO/Biochar三元复合材料。与Ag-ZnO和ZnO/Biochar复合材料相比,Ag-ZnO/Biochar复合材料在可见光下的光催化降解率显著提高。这是由于生物质炭赋予复合体系良好的吸附性能,使MB的光催化降解反应持续发生;而Ag纳米粒子的表面等离子体共振(Surface plasmon resonance, SRP)效应则增强了复合体系在可见光区的吸收。其中,当AgNO3、CNC、Zn(CH3COO)2·2H2O的质量比为0.01:0.25:1时,制得的Ag-ZnO/Biochar复合材料在可见光下具有最佳的光吸收性能和MB降解效率:室温条件下,黑暗中吸附30 min,再用可见光照射120 min,即可达到99%的MB降解率,显著高于Ag-ZnO(约23%)和ZnO/Biochar复合材料(约64%)。   相似文献   

11.
Li H  Sunol SG  Sunol AK 《Nanotechnology》2012,23(29):294012
Nanostructured highly porous TiO(2)/WO(3)/Fe(3+) aerogel composite photocatalysts are prepared, characterized and tested for model photocatalytic reactions. The catalyst structure is tailored to capture environmental pollutants and enable their decomposition in situ under both ultraviolet (UV) and visible light through oxidation to smaller benign molecules. A novel and green method is utilized to prepare the unique surfactant-templated aerogel composite photocatalyst that has a highly accessible porous nanostructure with high surface area and tailored pore size distribution. The sol-gel process is combined with supercritical extraction and drying. Supercritical drying with heat treatment results in titanium dioxide with anatase crystal form. Templates used further enable retention and tuning of the nanopore structure and surface properties. The synthesized catalysts were characterized using SEM, FIB, XRD and porosimetry prior to post-evaluation in model reactions. The bandgap of the catalyst particles was also determined using diffuse reflectance. The resulting aerogel TiO(2)/WO(3)/Fe(3+) has similar photocatalytic capability compared to highly optimized commercial Degussa P25 under UV exposure and offers much superior photocatalytic capability under visible light exposure. The model reaction utilized employed methylene blue (MB) photooxidation under visible and UV light.  相似文献   

12.
为克服纳米ZnO晶体可见光光催化活性低的缺点,以六水合硝酸锌、六亚甲基四胺和二水合草酸为原料,采用液相共沉淀-热分解法制备了六方纤锌矿型海绵状ZnO,然后在碱性条件下复合纳米Ag2O颗粒,得到海绵状Ag2O/ZnO复合光催化剂,并采用XRD、FTIR、紫外-可见漫反射(UV-Vis DRS)、FESEM、TEM和BET测量仪对其进行了表征;采用可见光光源,甲醛(HCHO)液体为光催化反应模型物,研究了不同摩尔比下Ag2O/ZnO复合光催化剂的暗吸附及光催化性能。结果表明,随着Ag2O相对含量的增加,HCHO暗吸附效果出现先增大后减小的趋势,当Ag2O与ZnO摩尔比为1∶5时,HCHO去除率达到43.34%;另一方面,在可见光下Ag2O/ZnO复合光催化剂对HCHO的降解率呈先增大后减小的趋势,其中Ag2O与ZnO的摩尔比为1∶10时取得最佳降解效果,经过90 min的可见光光照后HCHO降解率达到78%,总的HCHO去除率为85%。   相似文献   

13.
近年来,半导体光催化技术作为一项快速发展的新型环保技术,在降解水体中污染物和可再生清洁能源的生产领域有很大的应用前景。本文以所制备出的20 wt%类石墨烯碳氮化合物(g-C3N4)/TiO2为基质,利用水热法中纳米Ag颗粒部分氧化行为成功合成了Ag修饰异质结型Ag-Ag2O/TiO2-g-C3N4复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、光致荧光光谱(PL)、瞬态光电流响应等分析测试手段对Ag-Ag2O/TiO2-g-C3N4复合材料的晶体结构、形貌、光学性质等进行表征和分析。以亚甲基蓝溶液为目标降解物,研究了Ag-Ag2O/TiO2-g-C3N4复合材料的可见光催化性能。结果表明:在纳米Ag颗粒修饰的Ag-Ag2O/TiO2-g-C3N4复合材料中,Ag部分氧化成Ag2O;与g-C3N4的协同作用使Ag-Ag2O/TiO2-g-C3N4复合催化剂具有良好的可见光催化活性;可见光照射4 h后,Ag-Ag2O/TiO2-g-C3N4复合催化剂对亚甲基蓝的降解率接近50%。   相似文献   

14.
为了进一步提高Cu2ZnSnS4的光催化制氢性能,首先通过水热法制备出Cu2ZnSnS4光催化材料,在此基础上加入Cd(CH3COO)2·2H2O和Na2S进行二次水热反应制备Cu2ZnSnS4-CdS复合材料。通过XRD、SEM、TEM、Raman及XPS等分析测试方法对Cu2ZnSnS4-CdS复合材料的物相结构、微观形貌和元素价态进行了表征。结果表明:成功制备了结晶性能较好的Cu2ZnSnS4-CdS复合材料。Cu2ZnSnS4-CdS复合材料是由球状和块状颗粒组成;Cu2ZnSnS4-CdS复合材料表面>95%的Cd和S原子(原子比为1:1)的存在说明块状颗粒Cu2ZnSnS4表面生长的球形颗粒为CdS;在氙灯下的光催化制氢性能表明,Cu2ZnSnS4-CdS复合材料的光催化制氢效果明显优于Cu2ZnSnS4和CdS,产氢效率为296.17 μmol(g·h)-1。   相似文献   

15.
杜全超  吕功煊 《无机材料学报》2014,29(11):1204-1210
以Bi2S3纳米棒为模板合成了形貌可控的BiPO4 纳米棒复合光催化剂。在可见光辐射下, 该复合催化剂表现出优异的光催化降解亚甲基蓝(MB)的性能。UV-Vis漫反射谱结果表明: 催化剂经过Bi2O3修饰后对可见光有很好吸收; X射线衍射仪和透射电镜等表征结果表明, 所制备的BiPO4 纳米催化剂为直径约30 nm、长约200~500 nm的纳米棒。表面修饰少量Bi2O3可明显促进光催化剂对亚甲基蓝(MB)的可见光降解效率, 其活性是未修饰催化剂的1.7倍。光电流和N2吸附实验也表明表面修饰后的催化剂光电流和BET比表面积都明显增加。这可能是由于表面修饰的Bi2O3不仅显著提高了BiPO4 纳米棒复合催化剂的可见光吸收, 而且在BiPO4表面起到了富集电子和传输电子的作用。结果表明表面修饰Bi2O3的BiPO4 纳米棒是一种高活性的光催化材料。  相似文献   

16.
制备了还原氧化石墨烯(rGO)@Ag2O共同改性TiO2基复合材料(rGO@Ag2O/TiO2),并研究了其可见光催化性能。结果表明,三元复合材料rGO@Ag2O/TiO2的可见光催化性能远优于一元纳米TiO2和二元rGO/TiO2、Ag2O/TiO2复合材料,当可见光照射120 min后,溶液中约100%的罗丹明B分子被rGO@Ag2O/TiO2降解。rGO@Ag2O/TiO2三元复合材料可见光催化效率的提高主要源于窄带隙半导体Ag2O和高电导率材料rGO的引入,使形成的rGO@Ag2O/TiO2三元复合材料具有强的可见光吸收能力和光生电子空穴对分离能力。  相似文献   

17.
以氯化铜、磷酸二氢钠和尿素为原料, 加入模板剂十二烷基硫酸钠(SDS), 采用微波辅助加热法制备了具有不同规则结构的晶态羟基磷酸铜。实验研究了CuCl2与NaH2PO4的摩尔比、模板剂种类和原料浓度等因素对合成羟基磷酸铜晶体的影响。产物采用XRD、SEM和Raman等进行表征, 并通过降解甲基蓝溶液(MB)测试了羟基磷酸铜的催化性能, 探讨了制备条件对产物光催化降解性能的影响。结果表明, 当n(Cu)/n(P)为2, [PO43-]= 0.0025 mol/L, 微波加热温度80℃, 反应时间30 min, 尿素用量6.0 g, SDS用量为0.10 g时制备的羟基磷酸铜具有良好的光催化效果。实验还测试了催化剂的表面光电压谱, 并使用苯甲酸作为荧光探针, 叔丁醇为羟基自由基捕获剂初步验证了光催化反应中羟基磷酸铜的催化机理。  相似文献   

18.
根据能带理论,以Bi(NO3)3·5H2O为铋源,采用水热煅烧法制备了Bi2O3-Bi2WO6复合光催化材料,SEM、XRD、XPS、紫外可见漫反射(UV-vis DRS)、电化学阻抗(EIS)等表征手段对材料进行表征与分析,以U(VI)为目标污染物,在可见光下进行光催化还原U(VI)的性能研究。结果表明:与纯Bi2WO6相比,Bi2O3-Bi2WO6复合材料具有较高的光催化活性,当Bi2O3与Bi2WO6的摩尔比为2.4∶1时,Bi2O3-Bi2WO6的光催化活性最好,光催化活性增强归因于Bi2O3的加入,在Bi2O3与Bi2WO6界面形成的直接Z-scheme异质结,提高了光生电子-空穴的传输速率,降低了其复合率;另一方面,Bi2O3的加入使Bi2WO6带隙变小,扩大对可见光的响应范围,从而提高了Bi2O3-Bi2WO6光催化剂的活性。本研究为设计和合成具有高可见光活性的光催化剂和了解增强U(VI)光催化还原机理提供了新的思路。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号