首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
从仿生学角度分析了人体的步行运动规律,提出了一种基于人体运动规律的仿人机器人步态参数设定方法.首先对人体步行运动数据进行捕捉并分析,得出人体各步态参数间的函数关系,以人体步行相似性作为评价指标,提出仿人机器人步态参数的设定方法.其次,通过分析人体在步行过程中的补偿支撑脚偏航力矩的基本原理,提出了基于双臂及腰关节协调运动的仿人机器人偏航力矩补偿算法,以提高仿人机器人行走的稳定性.最后通过仿真及实验验证了所提出的步态规划方法的正确性及有效性.  相似文献   

2.
It is important for walking robots such as quadruped robots to have an efficient gait. Since animals and insects are the basic models for most walking robots, their walking patterns are good examples. In this study, the walking energy consumption of a quadruped robot is analyzed and compared with natural animal gaits. Genetic algorithms have been applied to obtain the energy-optimal gait when the quadruped robot is walking with a set velocity. In this method, an individual in a population represents the walking pattern of the quadruped robot. The gait (individual) which consumes the least energy is considered to be the best gait (individual) in this study. The energy-optimal gait is analyzed at several walking velocities, since the amount of walking energy consumption changes if the walking velocity of the robot is changed. The results of this study can be used to decide what type of gait should be generated for a quadruped robot as its walking velocity changes. This work was presented, in part, at the Sixth International Symposium on Artificial Life and Robotics, Tokyo, Japan, January 15–17, 2001.  相似文献   

3.
《Advanced Robotics》2013,27(5):415-417
The ability to develop a gait with one or more legs missing is an important issue for multi-legged robots used in demining applications. Accordingly, this paper presents a three-legged gait under the assumption that one leg of a quadruped walking robot is missing. After outlining a posture classification scheme for three-legged walking, the kick-and-swing gait is proposed as a basic and reasonable gait for three-legged walking and analyzed using a simple dynamic model. Minimum energy gait planning and an active shock-absorbing method are also investigated. The validity of the proposed gait is shown based on experiments using the quadruped walking robot TITAN VIII.  相似文献   

4.
Reduction of the energy consumption is one of the most important problems to utilize quadruped walking robots for various works on rugged terrain. The authors have studied basic strategy to achieve high energy efficiency when the quadruped walking robot do the motion essentially requires positive power by the analysis of body rising motion. This paper discusses the energy efficiency of the slope walking motion by the quadruped walking robot. First, we investigate the walking posture in consideration of ideal actuator characteristics where the robot consumes few negative powers at each joint which causes the main energy loss of the walking robot. Then, we investigate optimal walking posture in consideration of DC motor characteristics by the full search of three gait parameters which define the crawl gait. Furthermore, we derive the optimal walking motion by the optimization of three gait parameters which are kept constant during one cycle gait and instantaneous parameters such as body velocity and supporting forces changed at each moment simultaneously.  相似文献   

5.
《Advanced Robotics》2013,27(13-14):1539-1558
The capability of stable walking on irregular terrain is the primary advantage of legged robots over wheeled mobile robots. However, the traditional foothold selection-based gait generation algorithms are not suitable at some points for blind robots which cannot obtain the exact terrain information. A velocity-based gait generation algorithm with real-time adaptation rules which are necessary for steady walking is suggested. Particularly, we have developed a steady crawl gait with duty factor β = 0.75. The main feature of the suggested algorithm is that it is not based on foothold selection and it can be used for the walking of blind robots on more realistic irregular terrain. The adaptation rules are the translational velocity modification to satisfy the steady gait requirement and the swing period modification to avoid the kinematic limitation. The suggested gait generation algorithm has been implemented in a simple quadruped robot that has a total of eight actuated joints on the legs. Using PD controllers for each actuated joint for the trajectory following and the adaptation algorithm of gait parameters, the steady periodic crawl gait on irregular terrain has been demonstrated.  相似文献   

6.
《Advanced Robotics》2013,27(6):675-694
Selecting an appropriate gait can reduce consumed energy by a biped robot. In this paper, a Genetic Algorithm gait synthesis method is proposed, which generates the angle trajectories based on the minimum consumed energy and minimum torque change. The gait synthesis is considered for two cases: walking and going up-stairs. The proposed method can be applied for a wide range of step lengths and step times during walking; or step lengths, stair heights and step times for going up-stairs. The angle trajectories are generated without neglecting the stability of the biped robot. The angle trajectories can be generated for other tasks to be performed by the biped robot, like going down-stairs, overcoming obstacles, etc. In order to verify the effectiveness of the proposed method, the results for minimum consumed energy and minimum torque change are compared. A Radial Basis Function Neural Network is considered for the real-time application. Simulations are realized based upon the parameters of the 'Bonten-Maru I'humanoid robot, which is under development in our laboratory. The evaluation by simulations shows that the proposed method has a good performance.  相似文献   

7.
六边形对称分布六腿机器人的典型步态及其运动性能分析   总被引:1,自引:0,他引:1  
为了便于在不同地理条件下合理地选择较优的步态,实现稳定高效的智能行走,本文针对一种六边形 对称分布的六腿机器人研究其不同步态的优劣.主要从行走能力、稳定性和能耗3 个角度对六边形对称结构的六腿 机器人在同样占空比下的3 种静态稳定周期步态进行了比较研究,此外还简要分析了其越障能力和穿越窄道的能 力.研究分析结果表明3 种步态(横向昆虫式摆动步态、哺乳动物式踢腿步态和混合步态)在不同条件下各有优劣: 横向昆虫式摆动步态在能耗和越障能力方面较其他两种步态有优势;而混合步态在稳定性上最具优势,其它能力处 于中间;哺乳动物式踢腿步态则可穿越窄道,步长上较昆虫摆动步态略好.本文的研究工作为六边形对称结构的六 腿机器人在未知复杂地貌环境下的智能行走提供了重要参考.  相似文献   

8.
We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.  相似文献   

9.
Minimization of energy consumption plays a key role in the locomotion of a multi-legged robot used for various purposes. Turning gaits are the most general and important factors for omni-directional walking of a six-legged robot. This paper presents an analysis on energy consumption of a six-legged robot during its turning motion over a flat terrain. An energy consumption model is developed for statically stable wave gaits in order to minimize dissipating energy for optimal feet forces distributions. The effects of gait parameters, namely angular velocity, angular stroke and duty factors are studied on energy consumption, as the six-legged robot walks along a circular path of constant radius with wave gait. The variations of average power consumption and energy consumption per unit weight per unit traveled length with the angular velocity and angular stroke are compared for the turning gaits of a robot with four different duty factors. Computer simulations show that wave gait with a low duty factor is more energy-efficient compared to that with a high duty factor at the highest possible angular velocity. A stability analysis based on normalized energy stability margin is performed for turning motion of the robot with four duty factors for different angular strokes.  相似文献   

10.
认知人类的步行机理是双足机器人开发的重要基础.在人类行走过程中,外力力矩是影响行走稳定性的决定性因素,步态与外力力矩的相互作用是人类步行机理研究中的关键问题.尽管质心角动量可反映人体受到的外力力矩变化,但会随步态的演化呈现不同的变化规律.以人类自然行走步态为研究目标,通过准确获取人体行走过程中实时运动信息与质心角动量的变化,根据人体行走过程中的外力力矩与质心角动量的角度对人体步态进行力学分析,并结合人体行走过程中的足地关系与矢状面质心角动量变化规律,得出角动量特征点与步态特征点在时间上具有高度一致性的结论,最终实现基于矢状面质心角动量的人类步态周期阶段的精准划分.研究结果对于认知人类步行机理,指导行走康复医疗和双足机器人研发具有重要意义.  相似文献   

11.
《Advanced Robotics》2013,27(9):863-878
Fault tolerance is an important aspect in the development of control systems for multi-legged robots since a failure in a leg may lead to a severe loss of static stability of a gait. In this paper, an algorithm for tolerating a locked joint failure is described in gait planning for a quadruped robot with crab walking. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue walking maintaining static stability. A strategy for fault-tolerant gaits is described and, especially, a periodic gait is presented for crab walking of a quadruped. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The adjustment procedure from a normal gait to the proposed fault-tolerant crab gait is shown to demonstrate the applicability of the proposed scheme.  相似文献   

12.
随着自然灾害的频发,救援人员的伤亡人数也在增加,机器人代替人完成救援工作成为研究热点。根据对国际相关领域研究成果的分析,设计了一款稳定性高,环境适应能力强的仿生四足机器狗。全身支架采用铝合金打造,腿部采用碳纤维打造,搭配大扭矩电机,结合六自由度机械臂,实现不同地形环境下的前进方式转换。基于前肘后膝式的腿型设计并结合ADAMS仿真,实现稳定行走。结合气体检测和图像识别模块,实现救灾现场的环境勘探和搜救任务。基于稳定裕度最优化的原则,采用对角步态的行走步态控制方式。公布了8自由度前肘后膝X腿型式四足机器狗机械设计及其步态控制方案。  相似文献   

13.
The authors of the paper have collaborated in a joint project involving four French control, mechanics and computer-science laboratories. In the paper, various mechanical architectures of biped robots are examined in detail, showing that their walking capabilities are closely linked to the kinematic characteristics of the mechanical structure. Then, it is shown that the geometrical and inertial parameters of the mechanical systems strongly affect the gait. In particular, the influence of the biped inertia on the lateral stability of the system, as well as the conditions of the existence of passive pendular gaits during the swing phase, are computationally analyzed. Extending the ideas previously developed, some characteristics of the mechanical architecture and design of the BIP project can be clearly justified. It turns out that a kinematic structure with 15 degrees of freedom is necessary in order for the biped robot to develop anthropomorphic gaits. Furthermore, as an anthropometric mass distribution can improve the walking abilities of the robot, special transmitters have been designed in order to help to fulfil this requirement.  相似文献   

14.
半被动双足机器人的准开环控制   总被引:2,自引:0,他引:2  
目前的被动行走机器人还只能完成单一的步态,且非常容易摔倒,为此对半被动双足机器人的稳定行走控制问题进行了研究.通过结合被动行走和主动控制两种原理的优点,提出了一种准开环的行走控制方法.通过检测安装在机器人足底和髌骨处的接触开关信号,在髋关节处施加一个间断的、微小的开环振荡力矩,进而实现高效的稳定步行.仿真结果表明,当控制参数在较大范围内变化时,双足机器人仍可实现稳定行走,且步行能耗特性与人类相似;通过调节振荡力矩的参数,机器人可实现稳定的行走模式转换.  相似文献   

15.
To investigate the adaptability of a biped robot controlled by nonlinear oscillators with phase resetting based on central pattern generators, we examined the walking behavior of a biped robot on a splitbelt treadmill that has two parallel belts controlled independently. In an experiment, we demonstrated the dynamic interactions among the robot mechanical system, the oscillator control system, and the environment. The robot produced stable walking on the splitbelt treadmill at various belt speeds without changing the control strategy and parameters, despite a large discrepancy between the belt speeds. This is due to modulation of the locomotor rhythm and its phase through the phase resetting mechanism, which induces the relative phase between leg movements to shift from antiphase, and causes the duty factors to be autonomously modulated depending on the speed discrepancy between the belts. Such shifts of the relative phase and modulations of the duty factors are observed during human splitbelt treadmill walking. Clarifying the mechanisms producing such adaptive splitbelt treadmill walking will lead to a better understanding of the phase resetting mechanism in the generation of adaptive locomotion in biological systems and consequently to a guiding principle for designing control systems for legged robots.  相似文献   

16.
This article presents a 3D odometry algorithm for statically stable walking robots that only uses proprioceptive data delivered by joint angle and joint torque sensors embedded within the legs. The algorithm intrinsically handles each kind of emerging statically stable gait and is independent of predefined gait patterns. Additionally, the algorithm can be equally applied to stiff robots as well as to robots with compliant joints. Based on the proprioceptive information a 6 degrees of freedom (DOF) pose estimate is calculated in three steps. First, point clouds, represented by the foot positions with respect to the body frame at two consecutive time steps, are matched and provide a 6 DOF estimate for the relative body motion. The obtained relative motion estimates are summed up over time giving a 6 DOF pose estimate with respect to the start frame. Second, joint torque measurement based pitch and roll angle estimates are determined. Finally in a third step, these estimates are used to stabilize the orientation angles calculated in the first step by data fusion employing an error state Kalman filter. The algorithm is implemented and tested on the DLR Crawler, an actively compliant six-legged walking robot. For this specific robot, experimental data is provided and the performance is evaluated in flat terrain and on gravel, at different joint stiffness settings and for various emerging gaits. Based on this data, problems associated with the odometry of statically stable walking robots are identified and discussed. Further, some results for crossing slopes and edges in a complete 3D scenario are presented.  相似文献   

17.
动态双足机器人的控制与优化研究进展   总被引:1,自引:0,他引:1  
对动态双足机器人的可控周期步态的稳定性、鲁棒性和优化控制策略的国内外研究现状与发展趋势进行了探讨.首先,介绍动态双足机器人的动力学数学模型,进一步,提出动态双足机器人运动步态和控制系统原理;其次,讨论动态双足机器人可控周期步态稳定性现有的研究方法,分析这些方法中存在的缺点与不足;再次,研究动态双足机器人的可控周期步态优化控制策略,阐明各种策略的优缺点;最后,给出动态双足机器人研究领域的难点问题和未来工作,展望动态双足机器人可控周期步态与鲁棒稳定性及其应用的研究思路.  相似文献   

18.
针对高能耗导致的两足机器人实用化障碍,提出了一种全新的、系统化的步态能效优化控制方法.基于两足机器人运动的重要能耗指标(平均功率、平均功率偏差、平均力矩损耗),提出了能耗预估策略和能效优化算法,获取了零力矩点(ZMP)稳定区域内的能耗极小值.沿着能耗极小值所对应的上体轨迹对机器人步态实施能效优化控制,最终获得满足ZMP稳定判据的低能耗步态.仿真结果证明,该方法能够有效降低机器人能耗并保持其稳定性.  相似文献   

19.
The design of humanoid robots has been a tricky challenge for several years. Due to the kinematic complexity of human joints, their movements are notoriously difficult to be reproduced by a mechanism. The human knees allow movements including rolling and sliding, and therefore the design of new bio-inspired knees is of utmost importance for the reproduction of anthropomorphic walking in the sagittal plane. In this article, the kinematic characteristics of knees were analyzed and a mechanical solution for reproducing them is proposed. The geometrical, kinematic and dynamic models are built together with an impact model for a biped robot with the new knee kinematic. The walking gait is studied as a problem of parametric optimization under constraints. The trajectories of walking are approximated by mathematical functions for a gait composed of single support phases with impacts. Energy criteria allow comparing the robot provided with the new rolling knee mechanism and a robot equipped with revolute knee joints. The results of the optimizations show that the rolling knee brings a decrease of the sthenic criterion. The comparisons of torques are also observed to show the difference of energy distribution between the actuators. For the same actuator selection, these results prove that the robot with rolling knees can walk longer than the robot with revolute joint knees.  相似文献   

20.
With the advancements in technology, robots have gradually replaced humans in different aspects. Allowing robots to handle multiple situations simultaneously and perform different actions depending on the situation has since become a critical topic. Currently, training a robot to perform a designated action is considered an easy task. However, when a robot is required to perform actions in different environments, both resetting and retraining are required, which are time-consuming and inefficient. Therefore, allowing robots to autonomously identify their environment can significantly reduce the time consumed. How to employ machine learning algorithms to achieve autonomous robot learning has formed a research trend in current studies. In this study, to solve the aforementioned problem, a proximal policy optimization algorithm was used to allow a robot to conduct self-training and select an optimal gait pattern to reach its destination successfully. Multiple basic gait patterns were selected, and information-maximizing generative adversarial nets were used to generate gait patterns and allow the robot to choose from numerous gait patterns while walking. The experimental results indicated that, after self-learning, the robot successfully made different choices depending on the situation, verifying this approach’s feasibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号