首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
叶绿素亚铁脂质体的制备及缓释性能研究   总被引:1,自引:0,他引:1  
孟庆廷  韩玲利  张建国 《食品科技》2011,(3):233-236,240
目的:研究制备叶绿素亚铁脂质体的方法及产品缓释性。方法:采用硫酸铵梯度法制备叶绿素亚铁脂质体,以包封率为评价指标,在单因素实验的基础上,采用正交实验确定优化工艺,考察所得脂质体的缓释性。结果:叶绿素亚铁脂质体的最佳工艺条件为:叶绿素亚铁与磷脂的比例为1∶10、胆固醇与磷脂的质量比1∶2、孵育温度40℃、硫酸铵浓度为0.2mol/L。最佳工艺条件下制得3批脂质体的平均包封率为79.5%,脂质体中芯材在PBS溶液(pH7.2)中前3h的累积释放量低于15%。结论:实验中所选参实因子对叶绿素亚铁脂质体的包封率影响显著,其影响次序为药脂比>胆固醇与磷脂的比例>孵育温度>硫酸铵浓度,脂质体具有明显的缓释效果。  相似文献   

2.
以大豆卵磷脂和胆固醇作为壁材,采用薄膜分散-高压均质法制备佛手精油脂质体。以脂质体粒径、Zeta电位和包封率为指标筛选工艺参数和配方参数,确定脂质体最佳制备工艺,并对脂质体的形貌、稳定性进行考察,同时研究其抗氧化活性。结果表明,佛手精油脂质体的最佳制备工艺参数为:均质压力120 MPa、均质次数5次、磷脂/胆固醇比例5:1、精油添加量3.5 mg/mL。在此条件下制备的脂质体粒径为183.53 nm,PDI多分散指数为0.147,Zeta电位值为38.75 mV,包封率为47.23%,载药量为1.67 mg/mL。所制备的脂质体具有良好的离心稳定性、贮藏稳定性4℃贮藏30 d,精油保留率为85.03%,对DPPH、ABTS、羟基自由基的清除率分别为82.58%、78.02%、70.89%。结论:在均质压力120MPa、均质次数5次、磷脂/胆固醇比例5:1、精油添加量3.5mg/m L的条件下,制备的脂质体粒径适中、稳定性良好,具有良好的抗氧化活性。  相似文献   

3.
利用大豆粉状磷脂,采用薄膜法结合冻融法制备罗红霉素脂质体,采用紫外分光光度法测定罗红霉素脂质体的包封率.研究了罗红霉素脂质体配方中不同成分的比例,以及水合介质对脂质体包封率的影响.罗红霉素脂质体的最佳制备条件为:即水浴温度为40℃,m(罗红霉素):m(磷脂)=1∶25,m(罗红霉素)∶m(维生素E)=100∶1,m(罗红霉素)∶m(胆固醇)=1∶2,水合介质为6%的甘露醇溶液,加入的6%的甘露醇溶液为20 mL,在此条件下,罗红霉素脂质体的包封率为63.98%.该方法准确,可用于大豆磷脂罗红霉素脂质体的制备,并且制备的脂质体稳定.  相似文献   

4.
通过薄膜-超声分散法制备羧甲基壳聚糖包裹的椰子油脂质体,以大豆卵磷脂和氢化大豆卵磷脂为膜材,包封率为主要评价指标,采用单因素和正交实验对薄膜-超声分散法制备羧甲基壳聚糖包裹的椰子油脂质体的工艺和配方进行优化,并对所制备脂质体的微观形态、包封率、丙二醛(malondialdehyde,MDA)含量和体外释放度进行分析。结果表明:最佳制备条件为羧甲基壳聚糖与磷脂比为1:16,磷脂与胆固醇比为8:1,椰子油与磷脂比为3:1,pH为4.5,超声强度750 W,超声时间20 min,此条件下实际包封率为96.94%±0.20%。羧甲基壳聚糖包裹椰子油脂质体在0.9%氯化钠中,24 h的释放度为41.28%±0.30%。椰子油脂质体的包封率高和累积释放度高,稳定性好,可实现延缓释放和靶向给药。  相似文献   

5.
目的:富含乳脂肪球膜的乳清蛋白粉是婴幼儿配方乳粉的配料之一。有关专家在综合分析乳脂肪球膜对婴幼儿营养健康作用的研究文献基础上,形成《乳脂肪球膜及其配料的科学共识》。方法:组织科技界和产业界的相关专家,通过文献检索分析与研讨的形式开展研究。结果:乳脂肪球膜是包裹在乳脂肪液滴表面,由极性脂质、胆固醇和蛋白质等组成的复杂的3层磷脂蛋白膜,而鞘磷脂和神经节苷脂为乳脂肪球膜配料的特征性指标,其安全性和耐受性在临床试验中得到证实。现有研究表明在婴幼儿配方乳粉中添加“富含乳脂肪球膜的乳清蛋白粉”,可促进婴儿大脑认知发育,增强婴儿免疫力。目前乳脂肪球膜原料生产企业尚无统一的质量标准体系,乳脂肪球膜相关配料的组分复杂,且因获得方法不同而存有较大差异。对原料和终产品的检测方法,特别是对膜蛋白的检测方法尚不成熟,应加强乳脂肪球膜配料及主要特征成分检测方法、产品质量控制、营养功能与临床研究。政府有关部门、食品科技界及产业界也应加强对乳脂肪球膜及其配料的认知,助推我国婴幼儿配方食品产业健康发展。  相似文献   

6.
中链脂肪酸脂质体的制备及其特性评价   总被引:1,自引:0,他引:1  
刘成梅  王瑞莲  刘伟  万婕  刘玮琳 《食品科学》2007,28(10):143-146
采用薄膜蒸发-超声法制备中链脂肪酸脂质体,考察单因素制备工艺对包封率的影响以及所得脂质体的外观形态、粒径、Zeta电位和稳定性。结果表明,中链脂肪酸脂质体的最佳工艺条件为:磷脂与胆固醇之比为3:1,中链脂肪酸与总脂材比为1:10,表面活性剂(吐温-80)与膜材之比为3:10,制备温度为35℃。最佳工艺条件下产物包封率可达82.9%,平均粒径为240.420.3nm,Zeta电位为-52.273.2mV,4℃下放置90d质量稳定。  相似文献   

7.
以磷脂和胆固醇为膜材,脂溶性的中链脂肪酸(MCFAs)和水溶性的VC为模型药物,以脂质体的包封率和粒径为指标,分别采用薄膜法、复乳法、薄膜-高压法、复乳-高压法制备中链脂肪酸-VC复合脂质体,筛选出最佳制备方法(复乳-高压法),并通过单因素试验设计,确定复合脂质体的最优处方工艺为:总脂材质量浓度5.0g/100mL,MCFAs质量浓度10.0mg/mL,VC质量浓度3.0mg/mL,卵磷脂与胆固醇质量比为4:1,卵磷脂质量与无水乙醇体积比为1:10(g/mL),吐温与总脂材质量比为3:10,VE与卵磷脂质量比为4:100,120MPa条件下超微乳化处理2次。制备的复合脂质体MCFAs包封率达到49.01%,VC的包封率达到54.19%,平均粒径90.3nm,在4℃贮藏15d,包封率和粒径变化不大,表明脂质体低温贮藏稳定性良好。  相似文献   

8.
研究聚乙二醇修饰木犀草素脂质体的最佳制备工艺,以提高木犀草素的生物利用度。采用薄膜分散法制备聚乙二醇修饰木犀草素脂质体,以磷脂、胆固醇和磷脂酰乙醇胺-聚乙二醇2000作为载体,包封率为评价指标,采用Box-Behnken设计实验响应面优化法优化工艺参数,分析聚乙二醇修饰木犀草素脂质体的粒径、电位和形态等指标。结果表明聚乙二醇修饰木犀草素脂质体的最佳制备参数为:膜材比为10:1,脂药比为16:1,磷脂酰乙醇胺-聚乙二醇2000的质量分数为3%,超声时间15 min,水化温度40 ℃。Box-Behnken响应面法优化后的聚乙二醇修饰木犀草素脂质体平均包封率为86.3%,平均粒径为134.1 nm,电位为-14.07 mV,且在胃液、小肠液和结肠液中的累积释放率分别为39.08%、43.67%和71.71%。所制备的聚乙二醇修饰木犀草素脂质体包封率高,粒度均匀,缓释效果明显。  相似文献   

9.
采用复乳法,利用大豆粉状高纯磷脂制备维生素E脂质体。研究了维生素E脂质体配方中不同成分的比例、制备条件对脂质体包封率的影响。结果表明,用复乳法获得维生素E脂质体的最佳制备条件为:温度46℃,粉状混合磷脂加入量为2.5g,维生素E∶磷脂为1∶25(wt/wt),胆固醇的量为0.25g,维生素E与胆固醇比为1∶2.0(wt/wt),体积比为2∶1的三氯甲烷/甲醇混合有机溶剂为80mL(1g维生素E对应1200mL体积比为2∶1的三氯甲烷/甲醇混合有机溶剂),在此条件下,维生素E的包埋率为75%。  相似文献   

10.
以卵磷脂和胆固醇为膜材,采用薄膜- 超声法制备VC 脂质体。通过单因素考察生产工艺对包封率的影响以及正交设计法进行工艺优化。得出制备VC 脂质体最佳工艺:制备温度65℃、卵磷脂:胆固醇=5:1、总脂材:VC=25:1、总脂材:表面活性剂(吐温-80)=10:2,在此条件下包封率可达42.1%,平均粒度为373.9nm;将脂质体在4℃下密闭放置15d,以脂质体的粒径变化为指标考察其稳定性。结果表明,脂质体悬液粒径无明显变化,脂质体悬液稳定性良好。  相似文献   

11.
The membrane (Milk Fat Globule Membrane – MFGM) surrounding the milk fat globule is becoming increasingly studied for its use in food applications due to proven nutritional and technological properties. This review focuses first on current researches which have been led on the MFGM structure and composition and also on laboratory and industrial purification and isolation methods developed in the last few years. The nutritional, health benefits and techno-functional properties of the MFGM are then discussed. Finally, new techno-functional opportunities of MFGM glycoproteins as a possible ingredient for Lactic Acid Bacteria (LAB) encapsulation are detailed. The ability of MFGM to form liposomes entrapping bioactive compounds has been already demonstrated. One drawback is that liposomes are too small to be used for bacteria encapsulation. For the first time, this review points out the numerous advantages to use MFGM glycoproteins as a protecting, encapsulating matrix for bacteria and especially for LAB.  相似文献   

12.
The milk fat globule membrane (MFGM) is a unique colloidal assembly of phospholipids and proteins, with numerous potential applications as functional ingredient. The phospholipid components of the MFGM are gaining interest as they are a useful matrix for use as a constituent of delivery systems such as liposomes. Liposomes formulated with milk phospholipids are becoming an alternative to other sources of phospholipids such as soybean or egg yolk. However, incorporation of phospholipids fractionated from the milk fat globule membrane in dairy products requires an in-depth understanding of the functional properties of phospholipids. In particular, it is critical to understand which factors play a role in their stability and bioefficacy as delivery systems. Moreover, chemical and physical modifications of phospholipid liposomes occurring during digestion and the fate of the encapsulated compounds are very important to understand. This review discusses recent findings on the structure and functionality of MFGM, the bioactivity of the phospholipids fraction, their utilization as delivery systems, and their stability through gastrointestinal transit.  相似文献   

13.
The isolation of milk fat globule membrane (MFGM) material from buttermilk on a commercial scale has provided a new ingredient rich in phospholipids and sphingolipids. An MFGM-derived phospholipid fraction was used to produce liposomes via a high-pressure homogenizer (Microfluidizer). This technique does not require the use of solvents or detergents, and is suitable for use in the food industry. The liposome dispersion had an average hydrodynamic diameter of 95 nm, with a broad particle-size distribution. Increasing the number of passes through the Microfluidizer, increasing the pressure, or reducing the phospholipid concentration all resulted in a smaller average liposome diameter. Changing these variables did not have a significant effect on the polydispersity of the dispersion. Electron microscopy showed that the dispersions formed had a range of structures, including unilamellar, multilamellar, and multivesicular liposomes. The composition of the MFGM phospholipid material is different from that of the phospholipids usually used for liposome production in the pharmaceutical and cosmetic industries. The MFGM-derived fraction comprises approximately 25% sphingomyelin, and the fatty acids are primarily saturated and monounsaturated. These differences are likely to affect the properties of the liposomes produced from the phospholipid material, and it may be possible to exploit the unique composition of the MFGM phospholipid fraction in the delivery of bioactive ingredients in functional foods.  相似文献   

14.
The β-glucuronidase inhibitory action of milk fat globule membrane (MFGM) was studied. By increasing the MFGM concentration to 0.2%, nearly 90% of the β-glucuronidase activity was inhibited. The trypsin-derived digests of MFGM inhibited β-glucuronidase activity by ~ 42%. The inhibitory effect of MFGM on intestinal β-glucuronidase of mouse was studied. We administered MFGM (groups I: 5%; group II: 10%; group III: 20%) to mice and investigated the time course of changes in fecal β-glucuronidase activity. In group I and II, enzyme activity had decreased 15–20% on the 5th day of treatment, but in group III, a decrease in enzyme activity was seen with an inhibition rate of 50%, showing a marked intracolonic efficacy of MFGM. Thus MFGM may have potential in explaining, treating or preventing intestinal cancers.  相似文献   

15.
The milk fat globule membrane (MFGM) fraction refers to the thin film of polar lipids and membrane proteins that surrounds fat globules in milk. It is its unique biochemical composition that renders MFGM with some beneficial biological activities, such as anti-adhesive effects toward pathogens. However, a prerequisite for the putative bioactivity of MFGM is its stability during gastrointestinal digestion. We, therefore, subjected MFGM material, isolated from raw milk, to an in vitro enzymatic gastrointestinal digestion. Sodium dodecyl sulfate PAGE, in combination with 2 staining methods, Coomassie Blue and periodic acid Schiff staining, was used to evaluate polypeptide patterns of the digest, whereas mass spectrometry was used to confirm the presence of specific MFGM proteins. Generally, it was observed that glycoproteins showed higher resistance to endogenous proteases compared with non-glycosylated proteins. Mucin 1 displayed the highest resistance to digestion and a considerable part of this protein was still detected at its original molecular weight after gastric and small intestine digestion. Cluster of differentiation 36 was also quite resistant to pepsin. A significant part of periodic acid Schiff 6/7 survived the gastric digestion, provided that the lipid moiety was not removed from the MFGM material. Overall, MFGM glycoproteins are generally more resistant to gastrointestinal digestion than serum milk proteins and the presence of lipids, besides glycosylation, may protect MFGM glycoproteins from gastrointestinal digestion. This gastrointestinal stability makes MFGM glycoproteins amenable to further studies in which their putative health-promoting effects can be explored.  相似文献   

16.
A procedure for the reconstitution of milk fat globules (MFG) stabilized with milk fat globule membrane (MFGM) was developed. MFG was reconstituted by homogenizing a mixture of 1% MFGM and 25% milk fat at 45°C and at pH 7.0 for 1 min. The emulsifying properties of MFGM were evaluated by emulsifying activity (EA), emulsion stability (ES), whippability and foam stability. Of the variables affecting the reconstitution of MFG, prolonged homogenization decreased EA and ES. About 25% milk fat gave maximal EA and ES, increasing the MFGM concentration increased both EA and ES, which were also influenced by the pH level. Foam disappeared at >30°C.  相似文献   

17.
The phospholipid (PL) content was determined comparatively in the milk fat globule membrane (MFGM) and whole milk including their fatty acid profiles. The possible role of milk PLs in defence against pathogens was also addressed. The MFGM and whole milk showed a similar distribution of PL species; however, the fatty acid contents of the PL species were different. Total PL from MFGM showed a decrease in C18:0 content in parallel with an increase in C18:1 and C18:2 and very long-chain fatty acid (more than C20) content. No significant differences in the fatty acid content of phosphatidylcholine and sphingomyelin from either source were found. However, the phosphatidylethanolamine from MFGM had more C18:1 and C18:2 and less C14:0 and C16:0 than that from whole milk. A similar but less pronounced result was found for phosphatidylserine/phosphatidylinositol. Enterotoxigenic Escherichia coli strains failed to bind to PL, which had been previously separated by high-performance thin-layer chromatography.  相似文献   

18.
Ye A  Cui J  Singh H 《Journal of dairy science》2011,94(6):2762-2770
The influence of gastric proteolysis on the physicochemical characteristics of milk fat globules and the proteins of the milk fat globule membrane (MFGM) in raw milk and cream was examined in vitro in simulated gastric fluid (SGF) containing various pepsin concentrations at pH 1.6 for up to 2 h. Apparent flocculation of the milk fat globules occurred in raw milk samples incubated in SGF containing pepsin, but no coalescence was observed in either raw milk samples or cream samples. The changes in the particle size of the fat globules as a result of the flocculation were dependent on the pepsin concentration. Correspondingly, the physical characteristics of the fat globules and the composition of the MFGM proteins in raw milk changed during incubation in SGF containing pepsin. The major MFGM proteins were hydrolyzed at different rates by the pepsin in the SGF; butyrophilin was more resistant than xanthine oxidase, PAS 6, or PAS 7. Peptides with various molecular weights, which altered with the time of incubation and the pepsin concentration, were present at the surfaces of the fat globules.  相似文献   

19.
This research examined the effects of sodium hexametaphosphate on the physicochemical properties and the microstructure of the milk fat globule membrane (MFGM) after freezing. The particle size distribution showed that the peak of the MFGM in the controlled sample was higher than the peak in the frozen sample. The MFGM sample that contained the highest concentration of sodium hexametaphosphate displayed the highest peak. The MFGM samples with the highest concentrations of sodium hexametaphosphate were more stable than the samples with the lowest concentrations. Sodium dodecyl sulfate Polyacrylamide gel electrophoresis and scanning electron microscopy showed sizeable destruction of the MFGM after freezing.  相似文献   

20.
ABSTRACT: Confocal laser scanning microscopy (CLSM) was successfully used to observe the effect of milk processing on the size and the morphology of the milk fat globule in raw milk, raw ultrafiltered milk, and standardized and pasteurized milk prepared for cheese manufacture (cheese-milk) and commercial pasteurized and homogenized milk. Fat globule size distributions for the milk preparations were analyzed using both image analysis and light scattering and both measurements produced similar data trends. Changes to the native milk fat globule membrane (MFGM) were tracked using a MFGM specific fluorescent stain that allowed MFGM proteins and adsorbed proteins to be differentiated on the fat globule surface. Sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed the identity of native MFGM proteins isolated from the surface of fat globules within raw, UF retentate, and cheese-milk preparations, whereas only casein was detected on the surface of fat globules in homogenized milk. The microstructure, porosity, and gel strength of the rennet induced gel made from raw milk and cheese-milk was also found to be comparable and significantly different to that made from homogenized milk. Our results highlight the potential use of CLSM as a tool to observe the structural details of the fat globule and associated membrane close to its native environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号